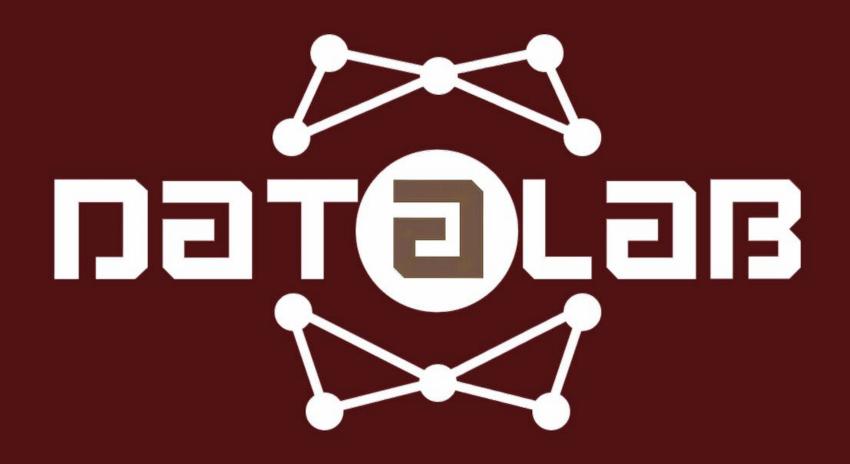


Objective:

- Propose new algorithms and methods to applied Data Science for Unstructured **Real Data**
- Collaborate with domain experts

Data Lab @ TXST DataLab12.github.io Founded in 2018 by CS faculty: Jelena Tešić, Computer Science

MEMBER THE TEXAS STATE UNIVERSITY SYSTEM



Motivation Go beyond solving incremental ML in silos

Funding

- CS Startup funding 2018 -2021
- NAVAIR funding 2018 2023
- THRC CHERR 2021 2023
- TxDot 2022- 2026
- DoE 2022-2024
- NVIDIA gifts

Data Lab @ TXST DataLab12.github.io Founded in 2018 by CS faculty: Jelena Tešić, Computer Science

Computer Facts @computerfact

concerned parent: if all your friends jumped off a bridge would you follow them? machine learning algorithm: yes.

3/15/18, 14:20

 \checkmark

ABOUT ME

Managing large Multimedia Repositories, Ph.D. Thesis

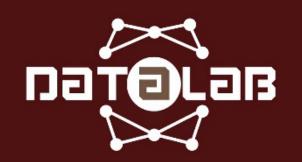
- M.S. (1999) and Ph.D. (2004) degrees from Department of Electrical and Computer Engineering, University of California, Santa Barbara
- Talk by Prof. Jovanovic USC that refers to the group, about grad student experience and how it shaped what we did after: https://www.youtube.com/watch?v=9p8iJnPQSX

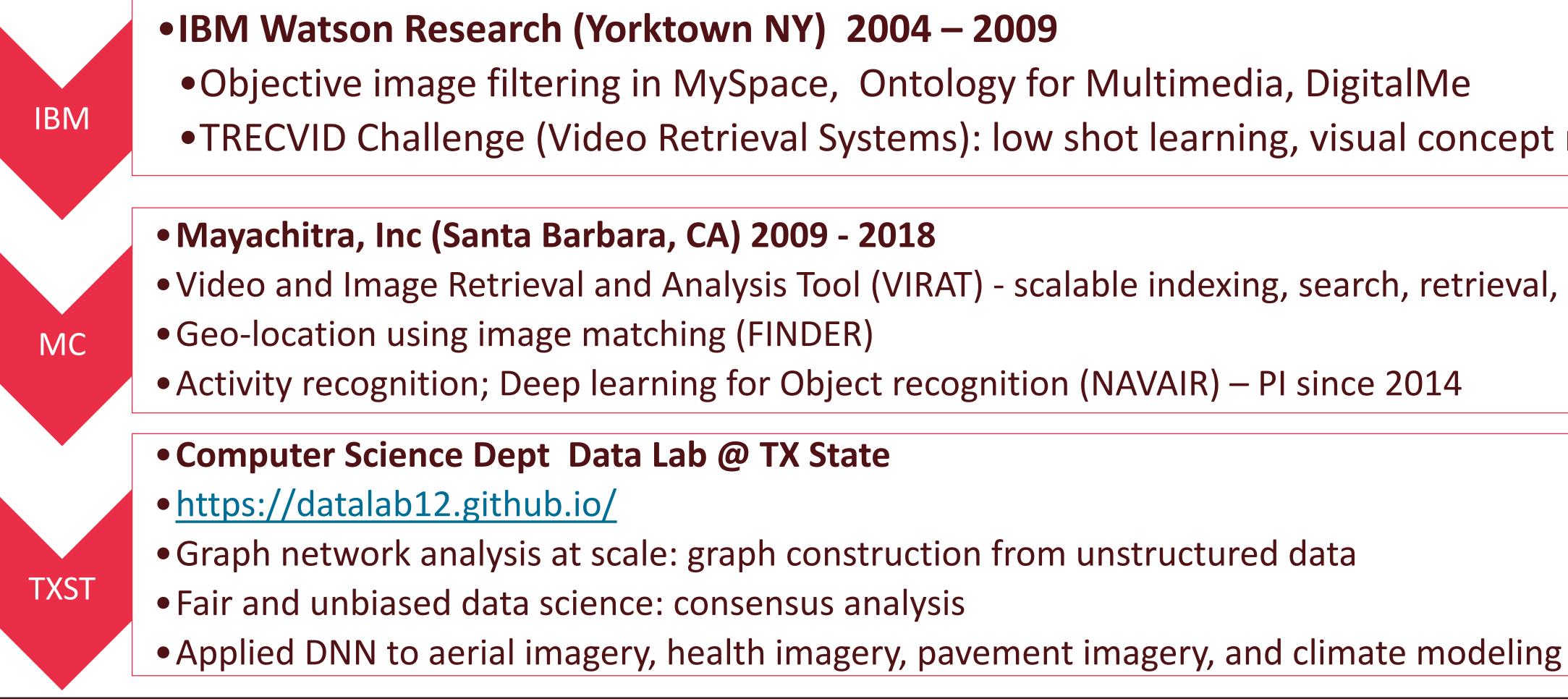
Research

jtesic.github.io

MS generated Alt text:

- A group of people playing baseball on a field
- A group of people playing a game of frisbee

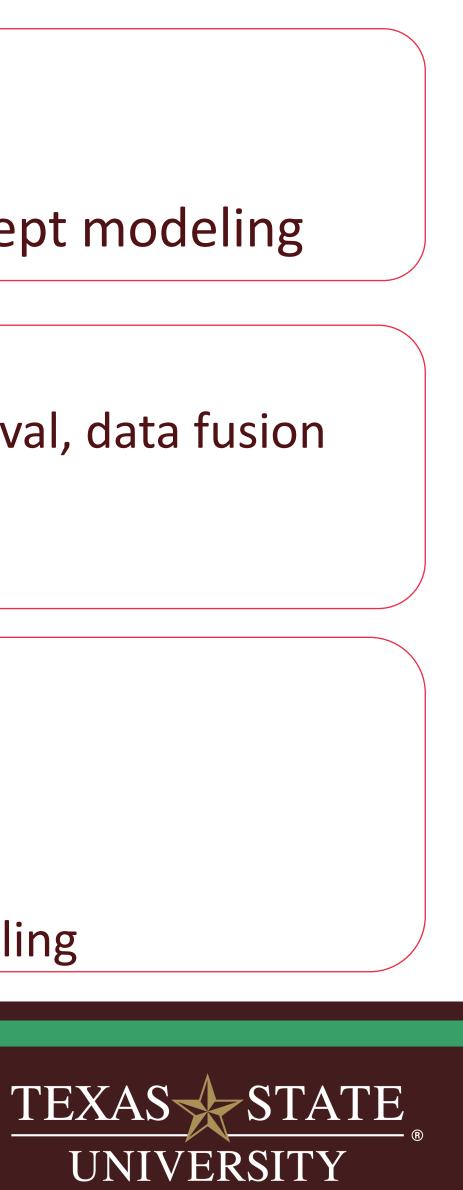




ABOUT ME: jtesic.github.io

- •TRECVID Challenge (Video Retrieval Systems): low shot learning, visual concept modeling

```
• Video and Image Retrieval and Analysis Tool (VIRAT) - scalable indexing, search, retrieval, data fusion
```



Visual Data Science

> NAVAIR

- > Dr. Wang, Ingram (TxDot PI)
- > Dr. Faroughi, Ingram (DoE PI)

Computer Science/IT

Software Development

Applied Data Science

- CHERR (Dr. Villagran)
- Dr. Feng, McCoy
- Dr. Metsis, CS
- Dr. Wang, CS

Data lab Projects and Collaborators

Machine Learning

Data Science

<u>~~</u> Math and Statistics

Traditional Research

Domains/Business Knowledge

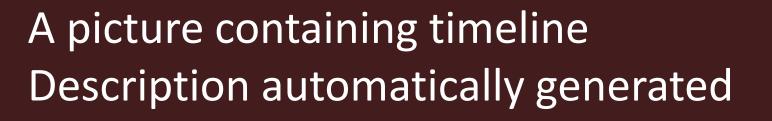
Network Data Science Dr. Rusnak, Math

CS Courses: Machine Learning Data Science (Ph.D.)



Visual Data Science

- New efficient data-driven DNN architectures
- Object localization and identification
- Activity recognition
- > Segmentation
- > 3D Point Cloud Modeling
- **Poster: Small-Object Detection**
- in Satellite Images (Bishal, Ph.D)



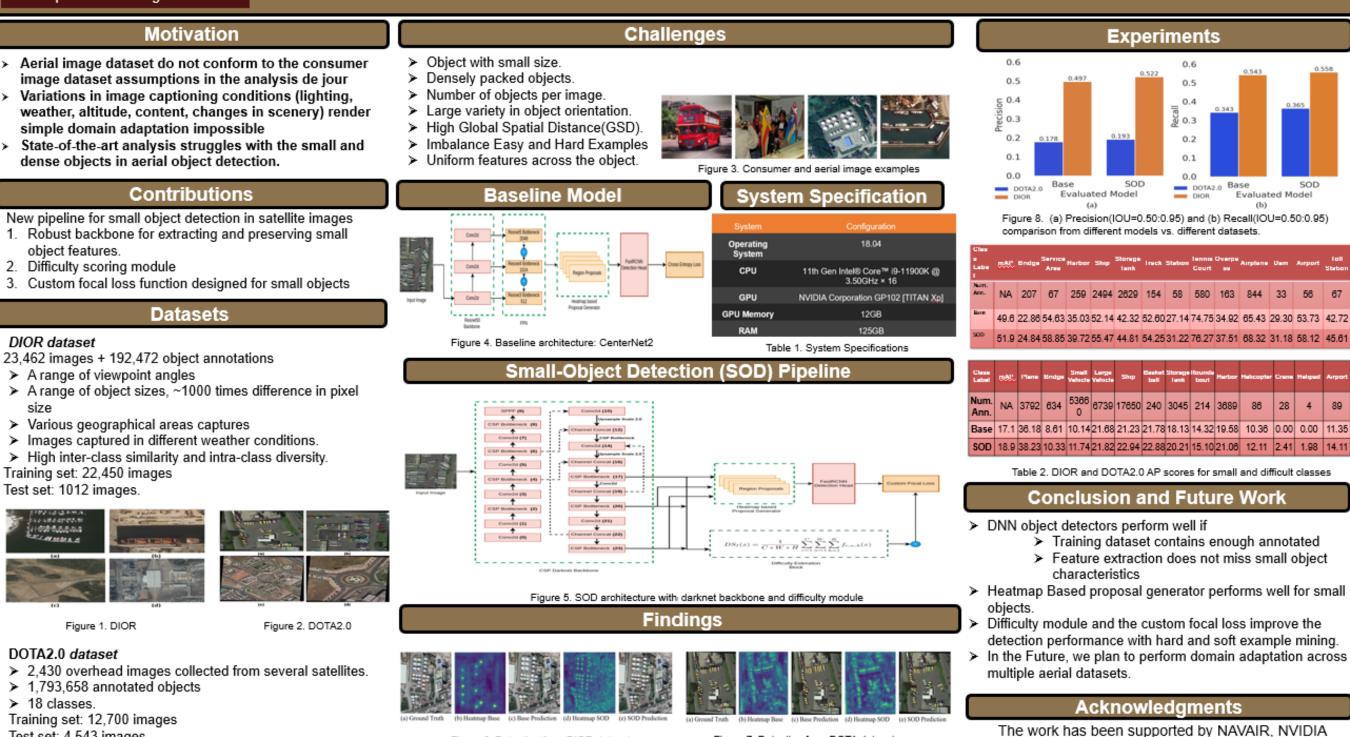


Figure 6. Detection from DIOR dataset

Test set: 4,543 images.

Small-Object Detection in Satellite Images

Debojyoti Biswas and Dr. Jelena Tešić Department of Computer Science

Figure 7. Detection from DOTA dataset

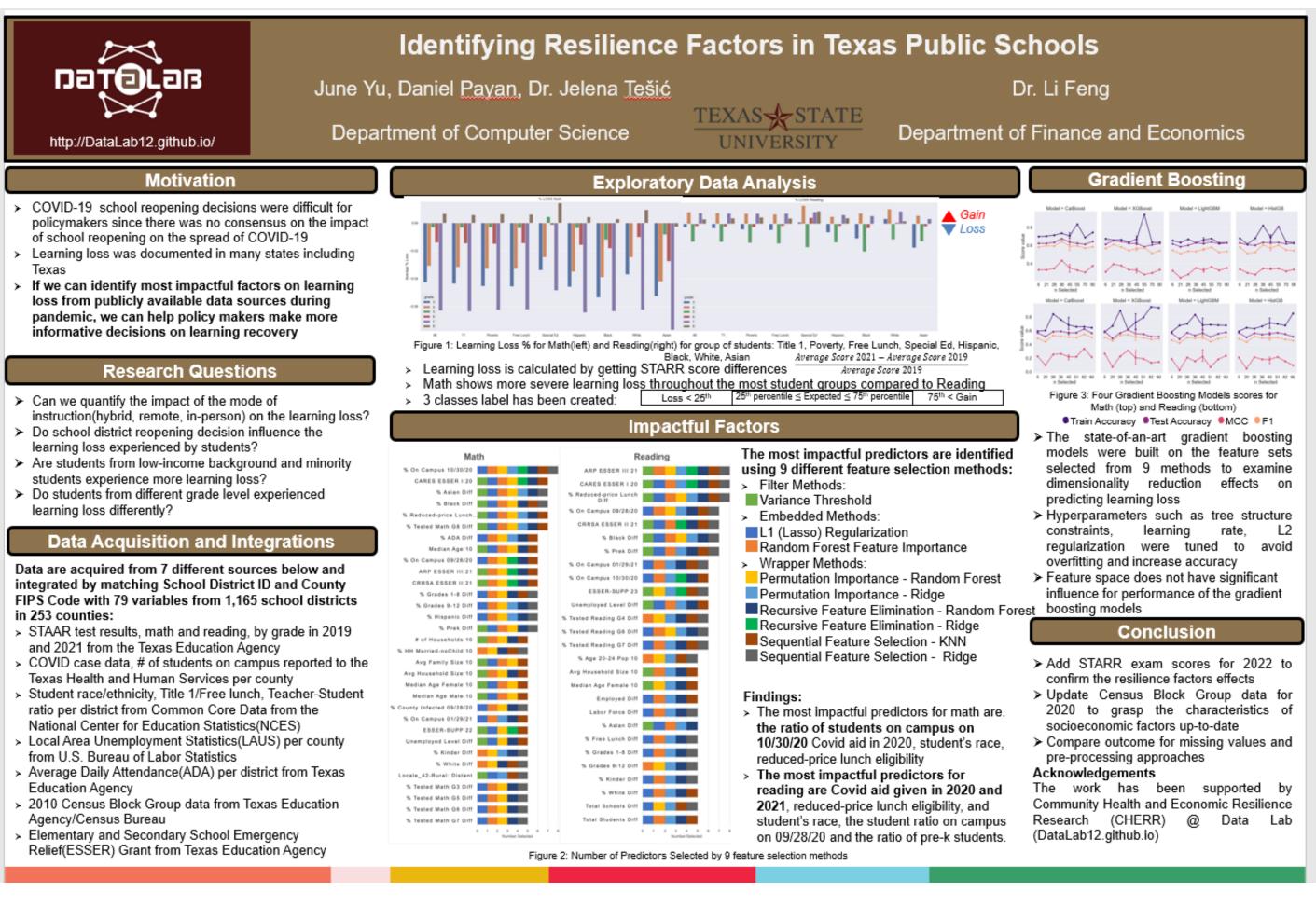
TEXAS STATE UNIVERSITY

@ Data Lab (DataLab12.github.io) TXST

Applied Data Science

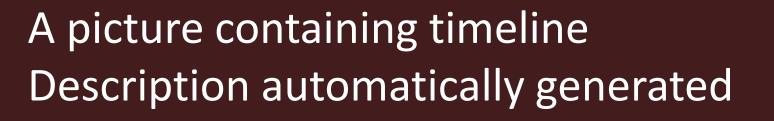
- **Develop new data-driven end-to-end** analytics that maximizes tabular ML advances
- > Work w domain experts to avoid GIGO
- > Heath data, education data
- **Poster: Identifying Resilience Factors in**
- Texas Public Schools (June, M.Sc.
- Daniel, B.Sc.)

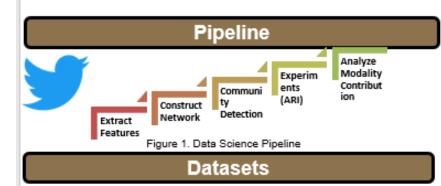
A picture containing timeline Description automatically generated



Network Data Science

- **Develop new algorithms and analytics** tools for real networks
- > Where algorithms developed for synthetic data break on real networks?
- > What is the greatest gain in network science in terms of algorithmic improvement?
- **Poster: Multi-Modal Community**
- **Detection in Twitter Datasets (Mo, Ph.D.)**





- augmented
- MuMIN Dataset

Dataset MuMiN-large MuMiN-medium MuMiN-small

Motivation

 Twitter is rich in data modalities: text, images/videos, and connections.

Attributed graph clustering takes into account content of the tweet as well as the connections among users. Research Question: How well do various modality clusters overlap and can the modalities be combined in a bid to get a better community description?

State Of The Art

- Use Large Language Models (BERT) for text content features and DNN for image/video features
- Use context: user profile, and location features of geotagged tweets for sentiment analysis.
- Model interactions of the tweeter verse using Bi-GCN and Tail-GNN architectures to capture the underlying structure

COVID+ Dataset

- MediaEval2020 connection baseline extended and
- 3.2million+ usets and 8+ million tweets
- Hashtags mined: #Coronavirus, #Covid19, and #Covid-19
- Data collected from Mar5ch to September 2020.
- pytwanalysis: Twitter Data Management And Analysis at Scale, IEEE SNAMS 2021.

	#Claims	#Threads	#Tweets	#Users	#Articles	#Images	#Languages	%Misinfo
	12,914	26,048	21,565,018	1,986,354	10,920	6,573	41	94.79%
m	5,565	10,832	12,659,371	1,150,259	4,212	2,510	37	94.20%
1	2,183	4,344	7,202,506	639,559	1,497	1,036	35	92.71%

Multi-Modal Community Detection in Twitter Datasets

Muhieddine Shebaro and Dr. Jelena Tešić

Department of Computer Science

Experiments

ARI	Network	BER	Tweet	GNN	Network-V		GNN-V	
Network	1.0	0	.084	0.0002	0.124		0.001	
BERTweet	0.084		1.0	0.0004	0.0	53	0.0266	
GNN	0.0002	0.0	0036	1.0	0.00	001	-0.001	
Network-V	0.124	0.	0533	0.0001	1.0		0.0138	
GNN-V	0.001	0.0265		-0.00091	0.01376		1.0	
able 3. ARI be	Mode	Commun	·	ised Ci	UVID (+)			
1	Networ	k		91,380				
ĺ	BERTwo	et	81,252					
ĺ	GNN		30,995					
ĺ	Network	:-V	67,146					
1	GNN-V	7		87,505				

							_				
I	Network BERT		Tweet	Tweet GNN		Network-V					
ork	1.0 0.		.084	0.0002	0.124		0.001				
weet	0.084		1.0	0.0004	0.0	53	0.0266				
N	0.0002 0.0		0036	1.0	0.00	001	-0.001				
rk-V	0.124	0.124 0.0533		0.0001	1.0		0.0138				
I-V	0.001	0.	0265	-0.00091	0.01	1.0					
ARI between various multi-modal modes in processed COVID (+)											
ĺ	Mode	ities									
Ì	Networ	k		91,380							
ĺ	BERTwe	et		81,252	1						
ĺ	GNN		30,995								
Ì	Network	-V		67,146							
ĺ	GNN-V	/		87,505		1					

Table 4. Number of communities in processed COVID (+)

ARI	Network	Text-Emb	GNN	Network-V	GNN-V	
Network	Network 1.0		0.000052	0.016	0.000052	
Text-Emb	0.00028	1.0	0.00066	0.0044	0.00018	
GNN	0.000052	0.00066	1.0	0.000052	0.000052	
Network-V	0.016	0.0044	0.000052	1.0	0.99	
GNN-V	0.000052	0.00066	0.00012	0.99	1.0	

Table 5. ARI between various multi-modal modes in large MuMIN datase

Mode	# of Communities					
Network	655					
Text-Emb	10					
GNN	3 21					
GNN Network-V						
GNN-V	2					

Conclusion and Next Steps

- Multiple modalities seem to capture specific information
- Not relevant for community discovery at global scale
- Have value for specific discovery and mining tasks
- Ground truth labeling missing in COVID+ to make a conclusion

Acknowledgments

The work has been supported by @ Data Lab (DataLab12.github.

Table 1. MuMIN Dataset

	Feature Extraction	
Textual Features	Visual Features	Network Features
Pretrained BERTweet on COVID- 19 Tweets embeddings	OCR	User Attributes (verified)
State-of-the-art text normalizations beforehand	Type of Image (B&W, Fake)	Replies
No "Fine-tuning of the Transformer" is necessary	Generic DNN (VGG16)	Quotes
	Image Captions (Captioner Locally Trained on MSCOCO)	Retweets
	Table 2. Features per modalities use	ed

- COVID(+): we extracted textual features using BERTweet and visual features using DNN MuMIN: Visual and Textual features provided

Network Construction, Pre-processing and Augmentation

- COVID(+): Replies, Quotes, Retweets. 340082784749783296 12398742960

 - Every target node should be connected to at least 10 nodes.
 - Isolated nodes and duplicate edges were eliminated.
 - The total number of nodes and edges dropped to 3.4 and 3.1 million

Augmentation of COVID+ Dataset

240082784389120086 12397187262

307744509434920960 1307743803 1307750534834283264 13078582568

307774529231362025 130775679

- Original network was augmented with visual similarity graph
- New edges added from vertex to 5 similar vertices
- Similarity was computed using cosine distance between DNN features
- Number of Edges increased from 3.4 million to 4.1 million

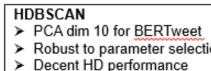
Modeling

- Graphic Neural Network Training for Community Discovery
- Leverage all modalities and aggregate features from nodes (Message Passing)
- GraphSage produces an embedding of size 50 dimensions (unsupervised).

Þ9

Louvian Clustering Algorithm

- Low Execution Time
- Ability to find communities in
- disconnected networks



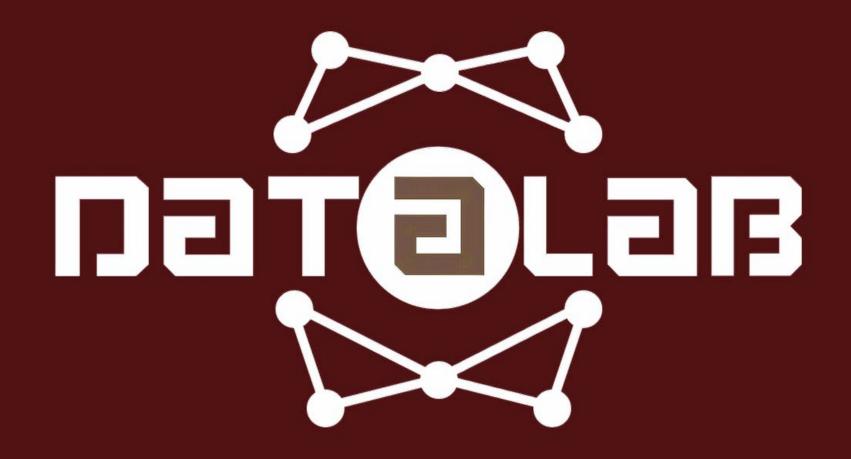
- Rmoved any edges in the Replies. 340082784477155328 13400677896557

 - MuMiN: Quotes, Replies.

- Epoch = 1, batch size = 50, layer size = 50, LR = 10^-3, Adam Optimizer.
- > It utilizes the neighborhood sampling improving the scalability and memory efficiency.

- Robust to parameter selection

Ŋу	NAV	AIR,	NVIDIA
.ic)@	TXS	Т



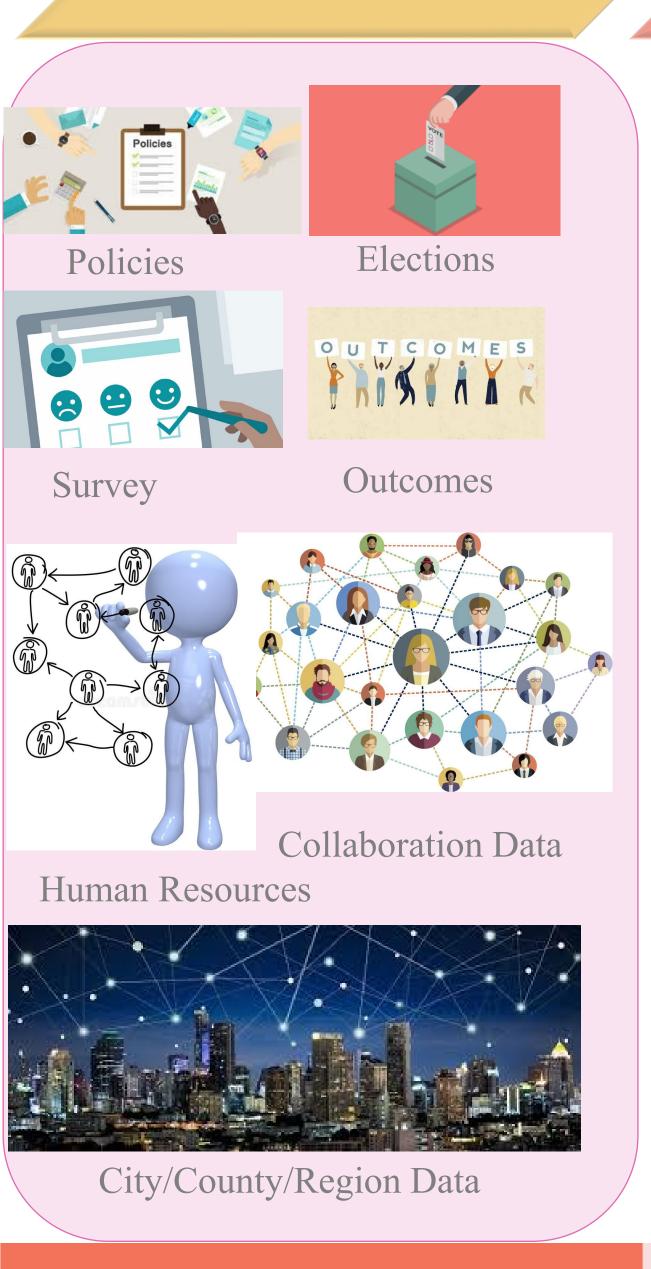
Signed Graph Analysis in Real Data

Jelena Tešić, Computer Science Lucas Rusnak, Mathematics

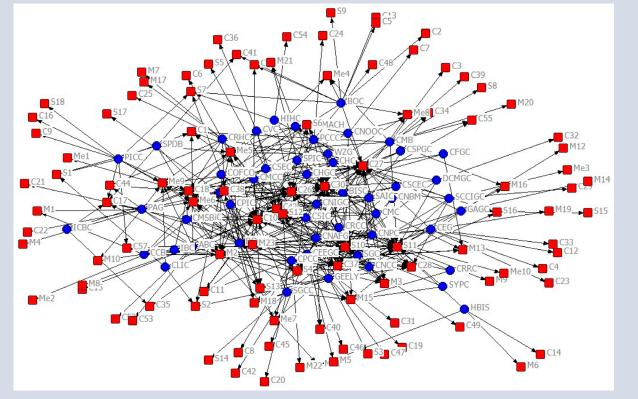
MEMBER THE TEXAS STATE UNIVERSITY SYSTEM

Input

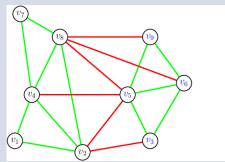
Modeling

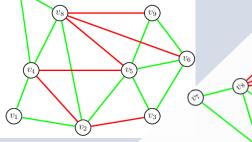


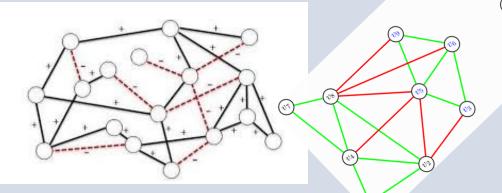
Multi-modal embedding in signed network



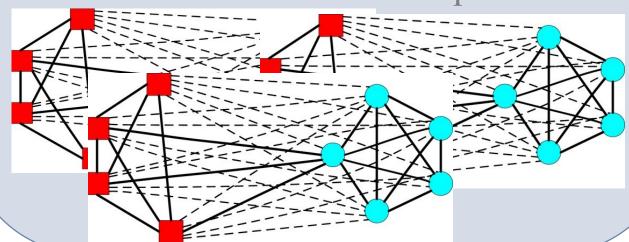
Frustration Cloud



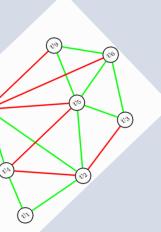




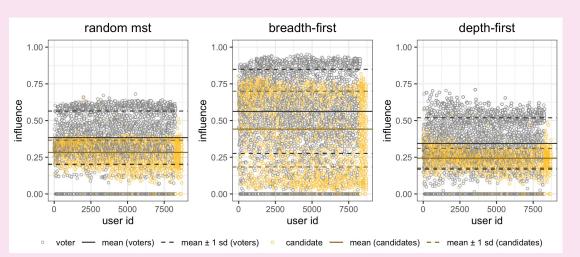
Status and Influence computation



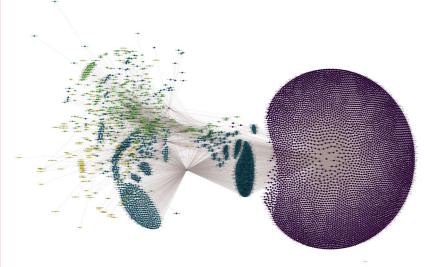
Output



Modeling Analysis



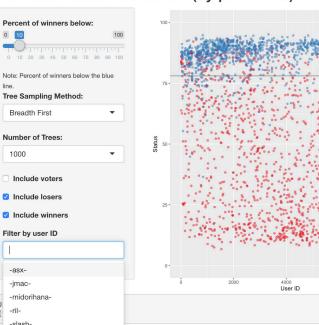
Data Analysis

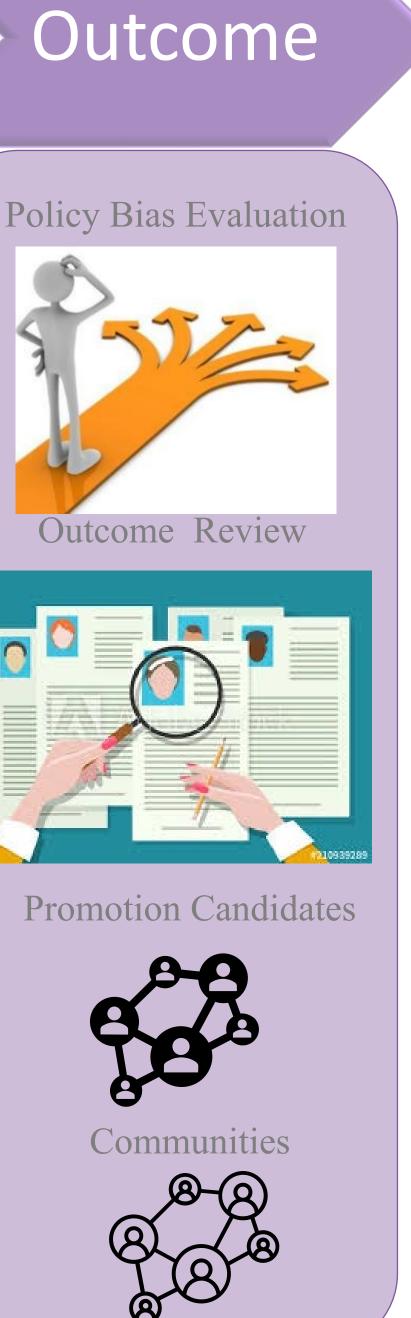


Interactive Analysis

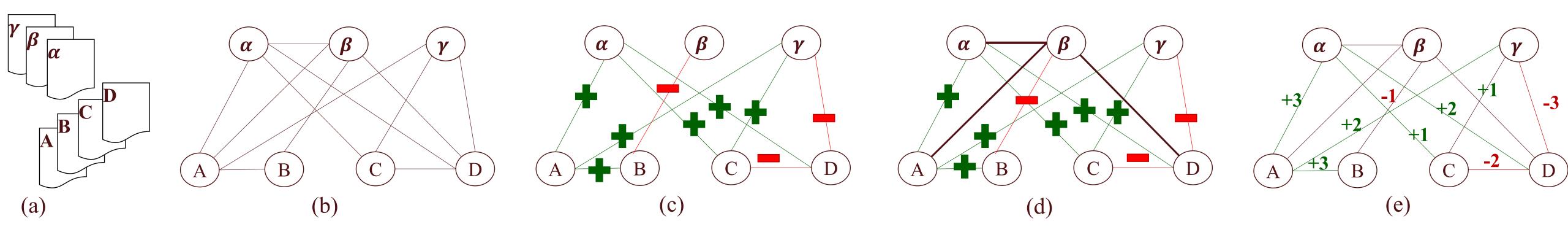
outcome Loser Winner

Promotion Cutoff Selection (by percentile)





HOW DO WE MODEL UNSTRUCTURED DATA RELATIONSHIPS?



Tweets, Health records, Open ended survey feedback, recommendation

Unstructured data need rich graph representation that unsinged GNN does not

capture well

- Unstructured data (a) and their representations: (b) unsigned graph for relationship; (c) signed graph for attitude; (d) merged (b) and (c); and (d) normalized weighted graph
- Unstructured data does not conform to pre-defined data model or it is not organized e.g.

SIGNED GRAPH FROM REAL DATA

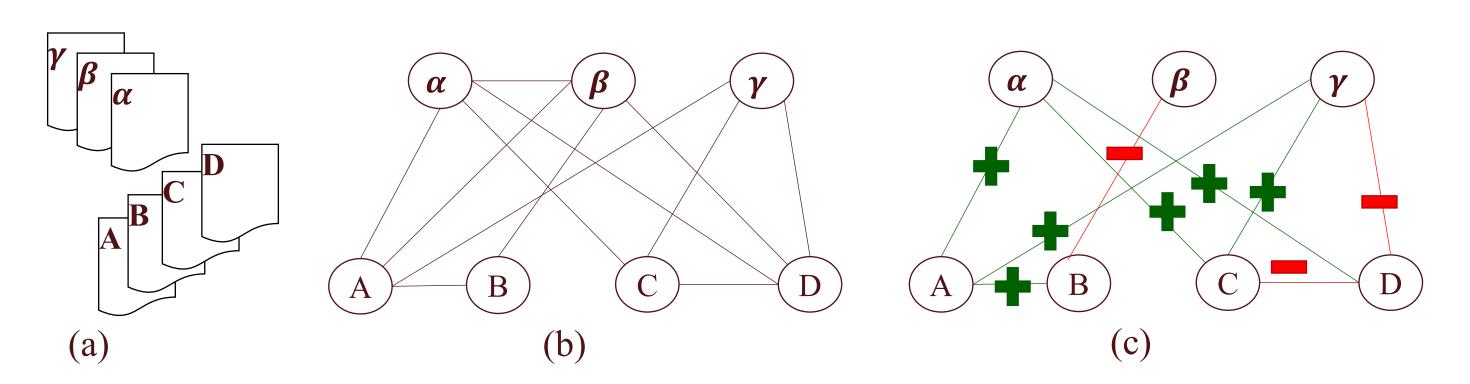


Signed graphs offer the binary sentiment relationship model

- State-of-the-art in unsigned homogeneous graph tackles trillions of edges and billions of nodes (KDD '22) while signed graph benchmarking is at thousands of nodes and hundreds of thousands of edges (SDM '22).
- small in size and number 12yo benchmark

too similar in topology to support the research progress of signed graph analysis for

SIGNED GRAPH STATE OF THE ART



Signed graphs SOTA relies on spectral methods or GNN

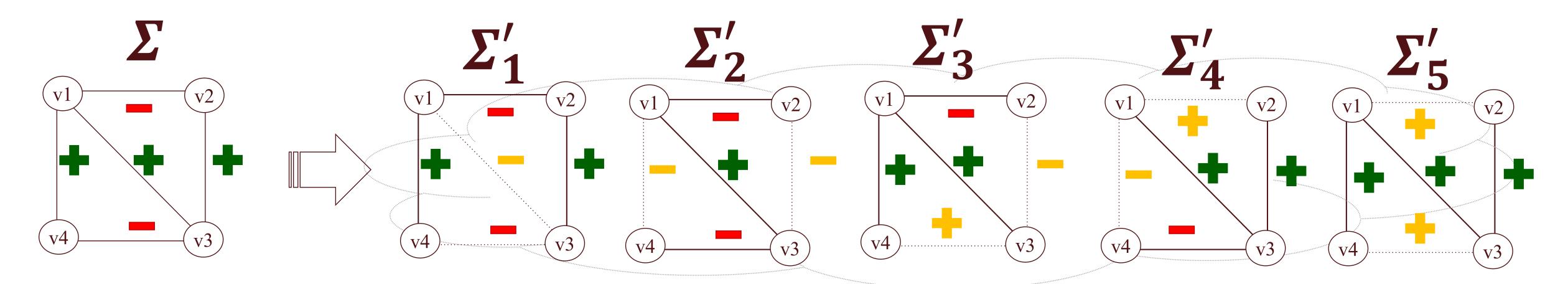
- Spectral Methods suffer from eigenvector poisoning and scalability issues (Journal of Complex Networks, June 2022)
 - Small world and density assumption
 - Prohibitive complexity for real networks
- \succ GNN advances for specific dataset and measure only highly biased (KDD '22)
- Small and sparse benchmarks Advances in silos

OUR SOLUTION: SCALABLE GRAPH BALANCING

BALANCED STATES OF THE SIGNED GRAPH (DM&KD 2021)

 \succ Balanced graph: signed graph where each of its cycles includes an even number of negative edges.

- sign can be changes so that the graph can be converted to balanced graph.
- > Multiple options: balanced states



עד

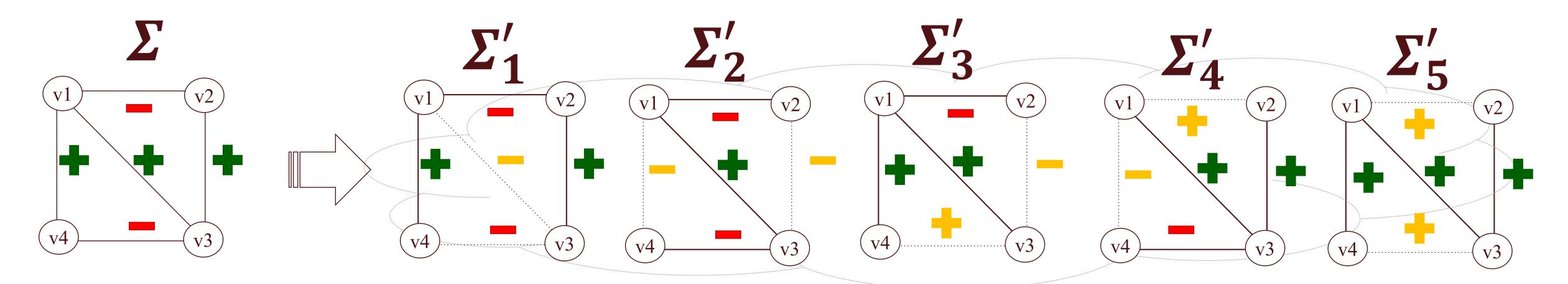
> Sociologists, psychologists, physicists, and control theorists are interested in the smallest number of edges whose

BALANCED STATES OF THE SIGNED GRAPH (DM&KD 2021)

> The frustration index determines the distance of a network from a state of total structural balance.

> There is more that one way to achieve total structural balance by switching signs of minimum number of edges

 \succ Frustration cloud: a set of all nearest balanced stated of the graph Σ

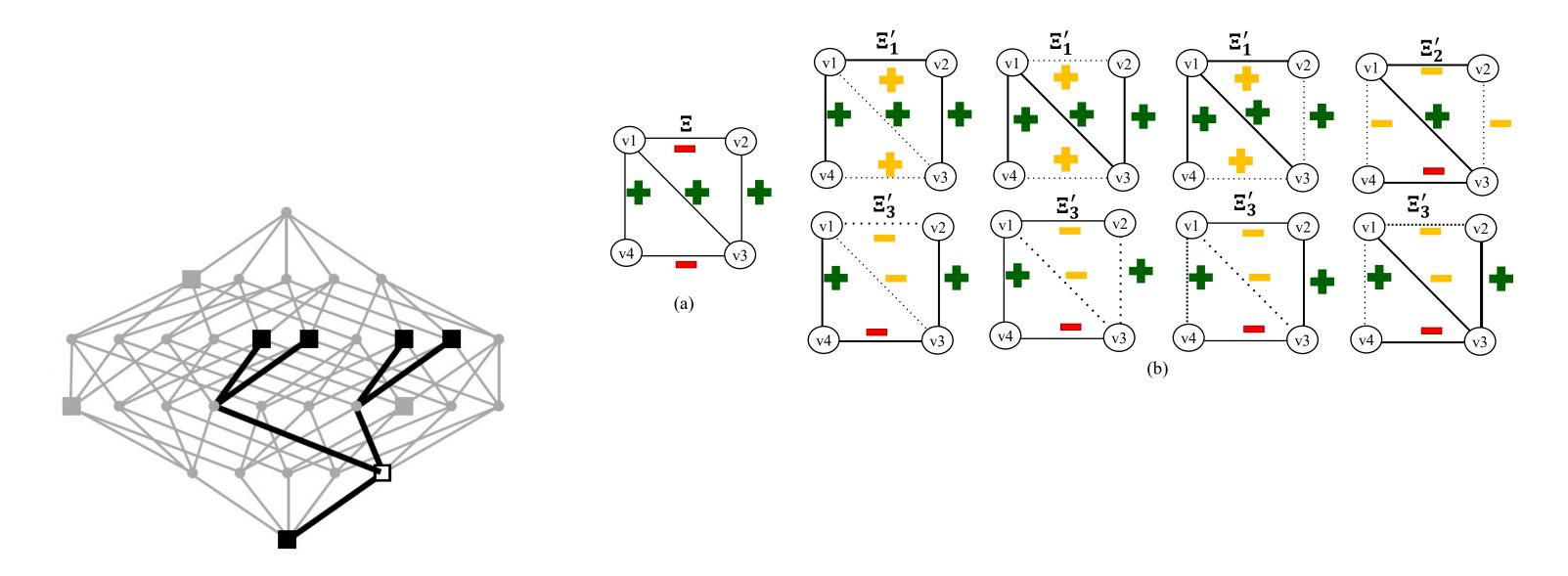


עד

(a)

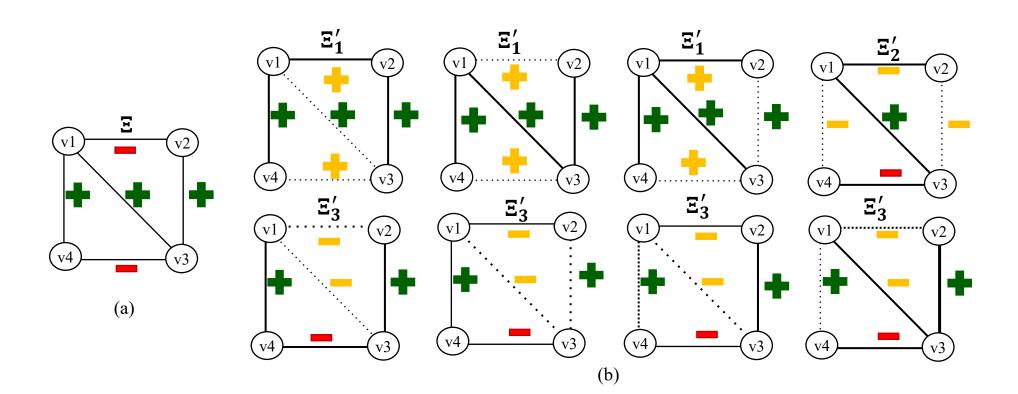
BALANCED STATES OF THE SIGNED GRAPH (DM&KD 2021)

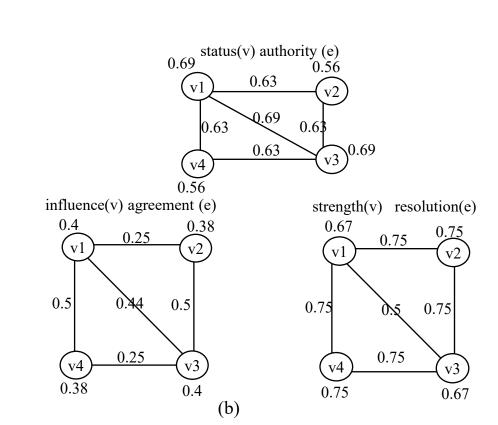
 \succ Frustration cloud: a set of all nearest balanced stated of the graph Σ Balanced states cannot be easily found **OUR PROPOSAL: TREE-BASED SAMPLING METHOD**



CONSENSUS FEATURES OF THE SIGNED GRAPH (DM&KD 2021, ACM SAC 2022)

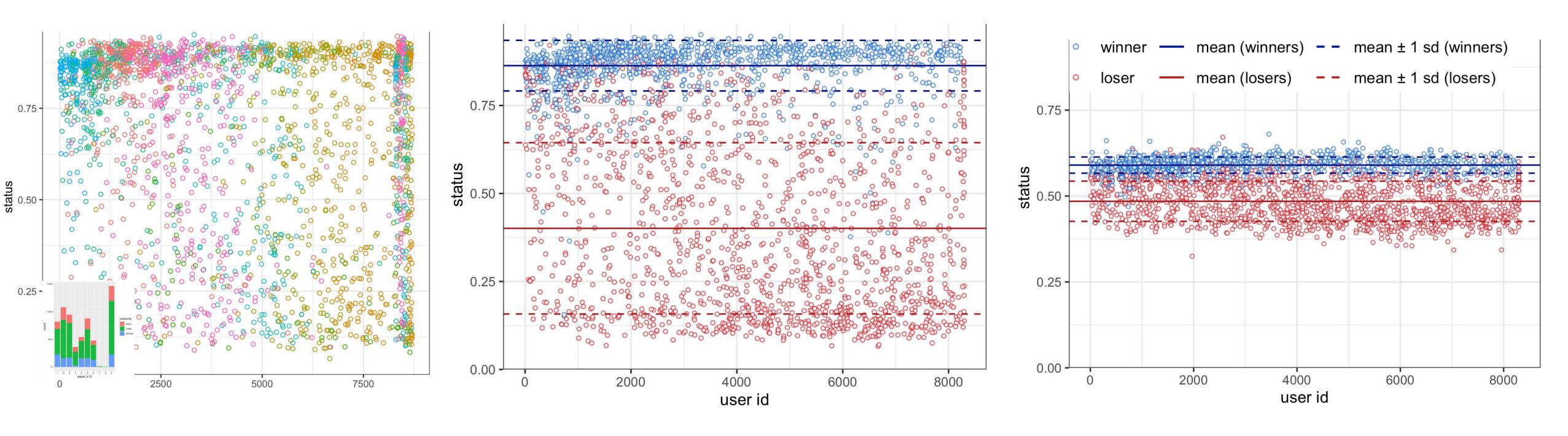
- Characterize vertices using frustration cloud
- Consensus Space construction (In Submission)





TREE-SAMPLING METHOF (DM&KD 2021)

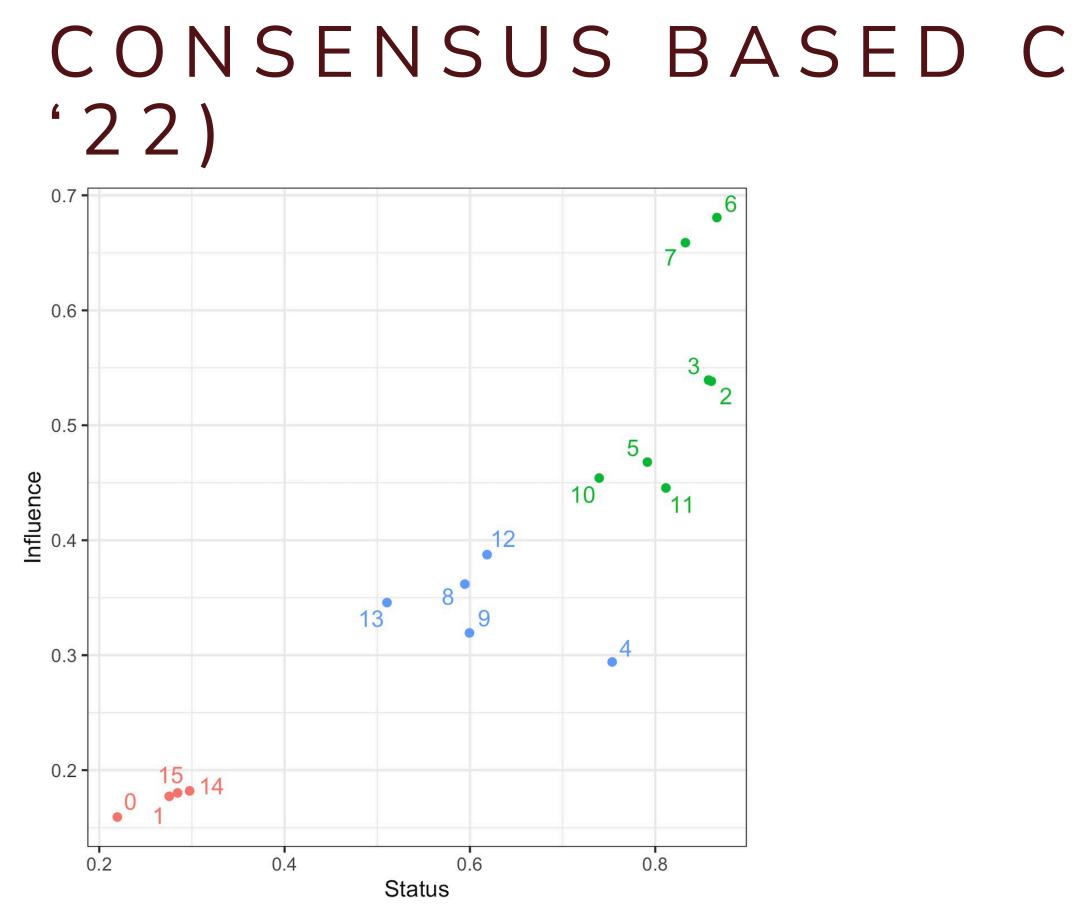
Breath-first search provides the highest resolution of the nearest balanced states



(a) spectral clustering

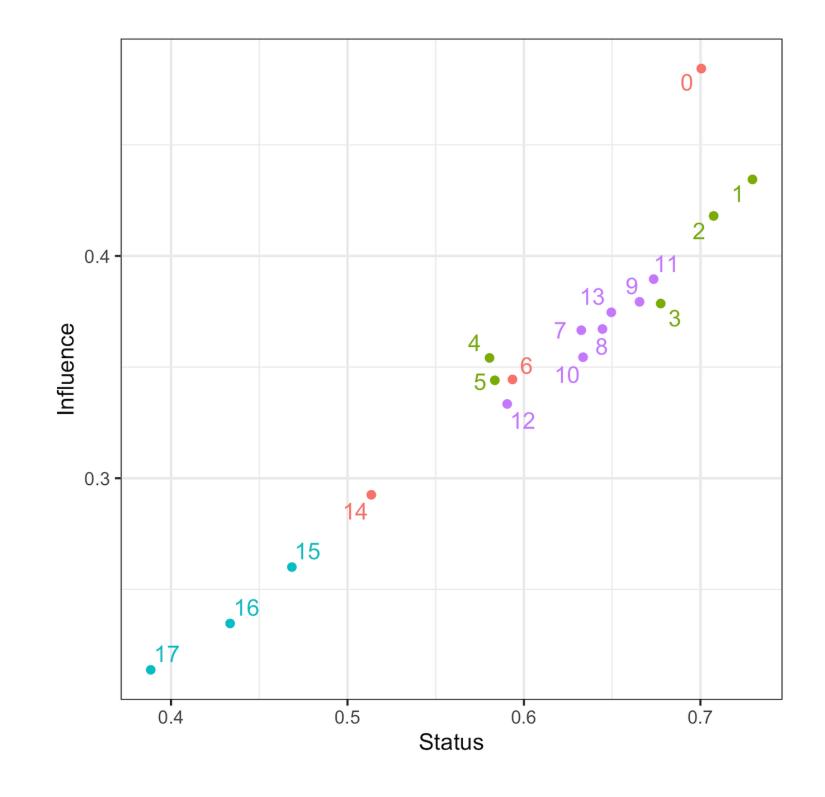
(b) BFS: outcome

(c) random outcome



Highland Consensus based clustering of vertices show the strong correlation of cluster discoverability to GT

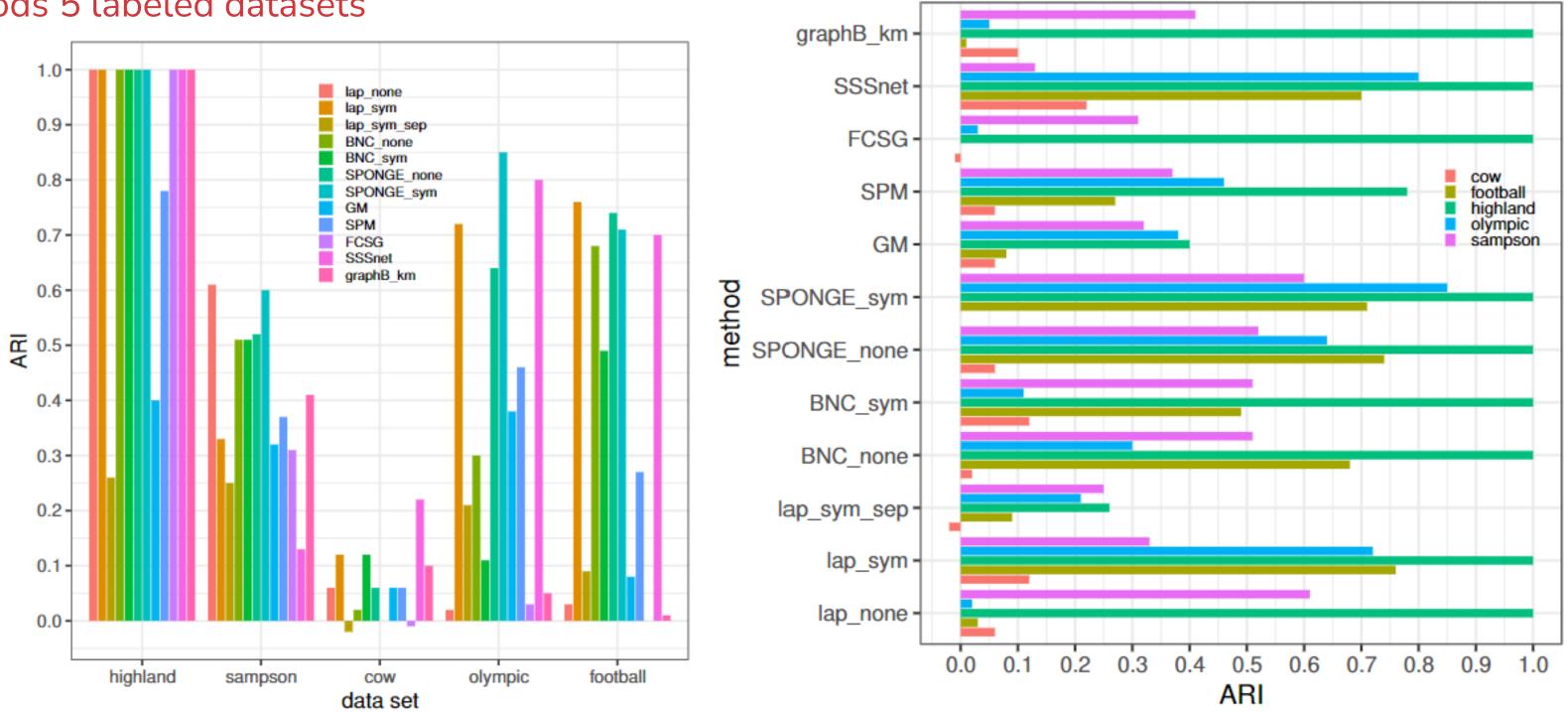
CONSENSUS BASED CLUSTERING (ACM-SAC



Sampson Consensus based clustering of vertices exposes the disconnect between GT and graph representation

SIGNED GRAPH CLUSTERING SURVEY (Journal of Complex Networks '22)

12 methods 5 labeled datasets



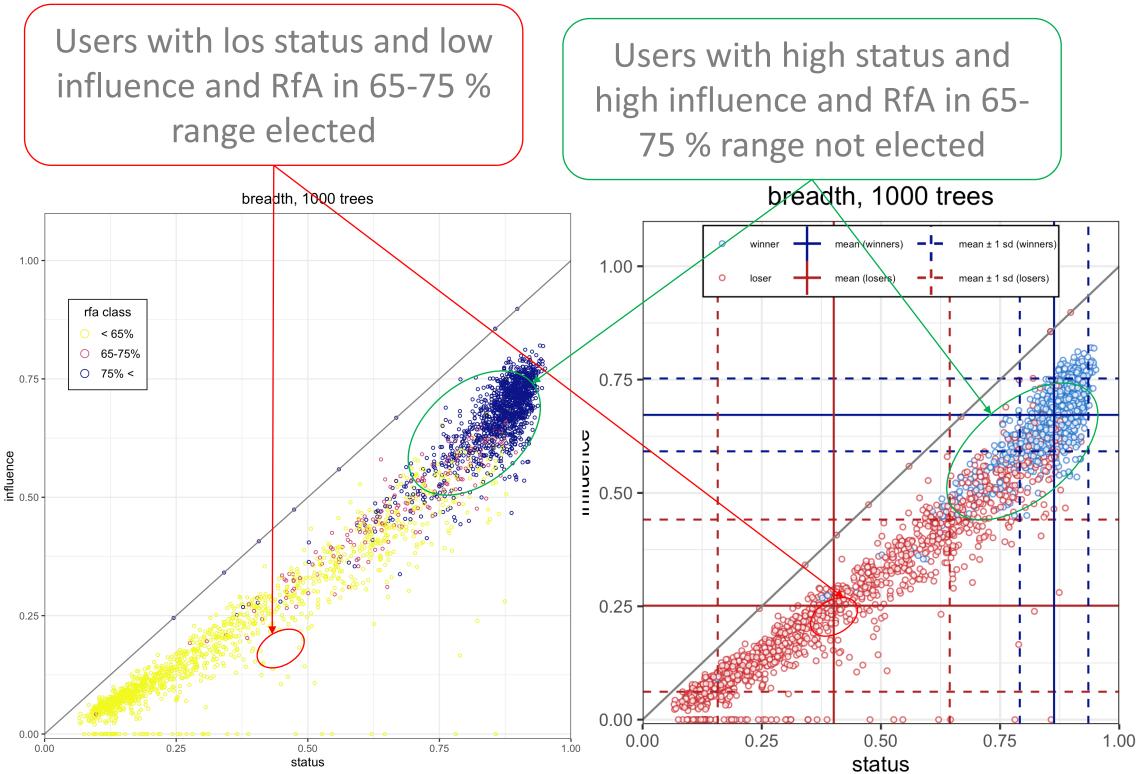
SIGNED GRAPH CLUSTERING SURVEY (Journal of Complex Networks '22)

5 methods 4 unlabeled datasets: scalability, runtime, trivial class recovery.

Most comprehensive and unbiased real benchmark to date

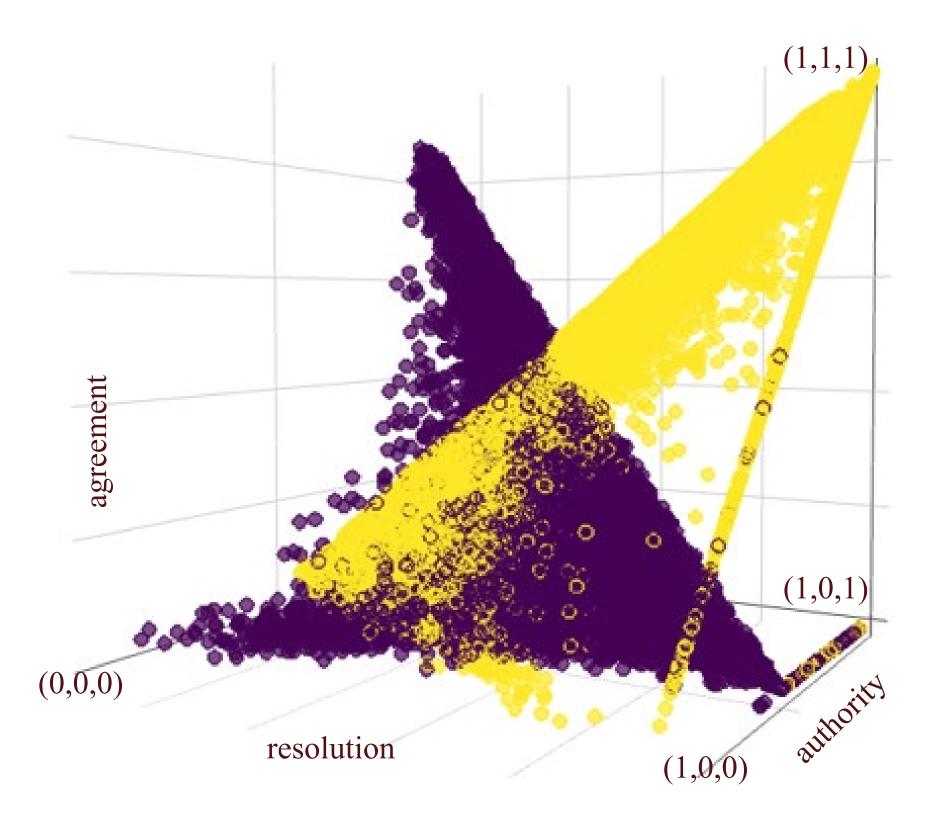
		Lap	lacian	Balanc	ed Cuts	SPC	NGE	FC	CSG	gra	phB		grap	hB
dataset	k	pos_in	neg_out	pos_in	neg_out	pos_in	neg_out	pos_in	neg_out	pos_in	neg_out	k	pos_in	neg_out
cow	3	<u>0.99</u>	<u>0.89</u>	1.0	0.55	1.0	0.3	0.84	0.25	0.98	0.58	3	0.98	0.58
wiki	30	<u>0.63</u>	<u>0.67</u>	0.9	0.17	0.59	<u>0.71</u>	0.49	0.52	0.05	0.96	4	0.29	0.73
slashdot	100	1.0	0.0	0.96	0.19	1.0	0.0	N/A	N/A	0.02	0.98	10	0.22	0.78
Epinions	100	1.0	0.0	<u>0.96</u>	<u>0.19</u>	1.0	0.0	N/A	N/A	0.03	0.97	10	0.13	0.88

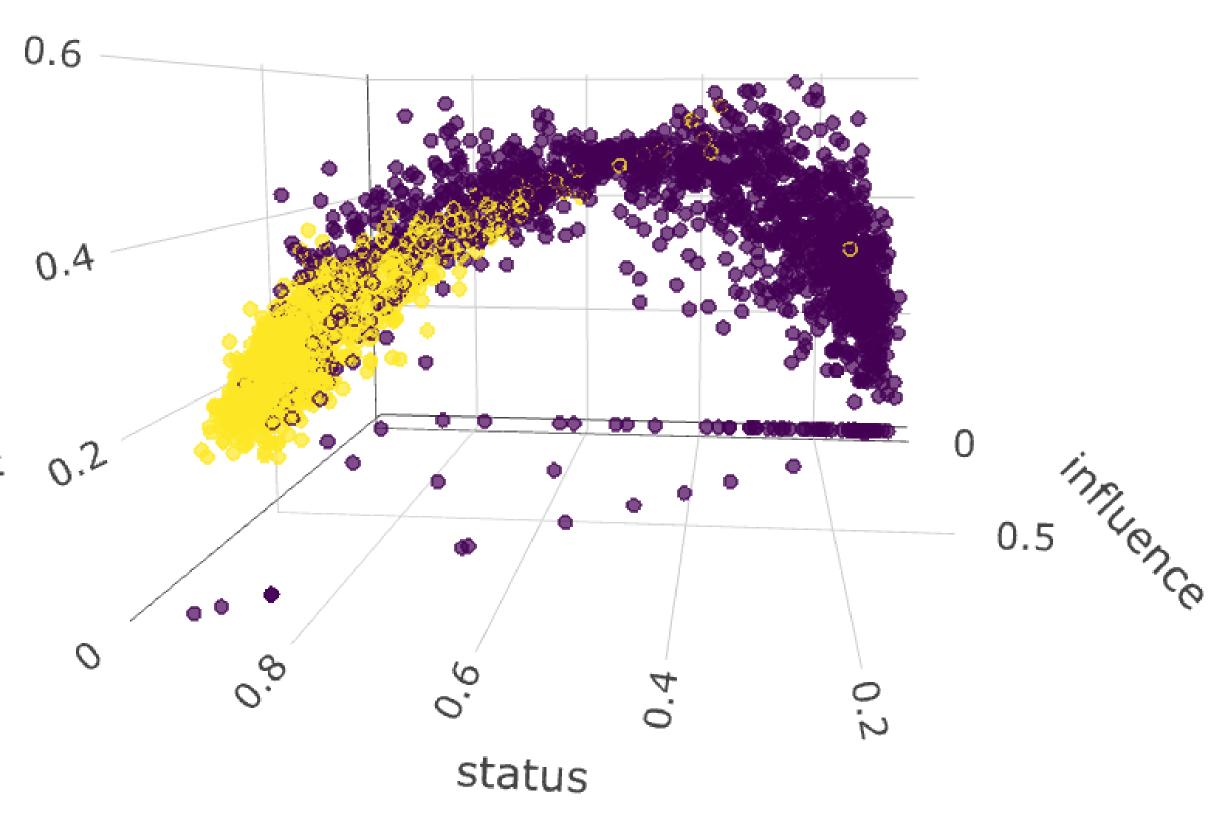
DataLab12.github.com/graphB



Wikipedia election (over 7000 people) majority voting results (RfA) (left) and final outcome (right) wrt to status and influence measure the tool introduces. The tool flagged spam users, privileged users, narrow domain users and all anomalies in the process using simple rules:

BIAS DISCOVERY

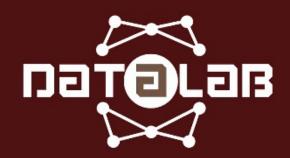




DataLab12.github.com/graphB

Joint work w Prof. Rusnak, Math dept Funded by TXST startup 2019 – 2021, and CHERR (2021-2022)

- Novel algorithm for signed graph analysis using balancing theory.
- Accurately models the alliance network
- Provides discriminant unbiased features for community discovery
- Successfully predicts administrator election outcome consistent with real election outcomes
- Balance theory answer to spectral clustering issues
- Scalable implementation w Dr. Burtcher's team (graphB+) to apply to Amazon data (SC '21)



 Computers will always do literally, exactly what you tell them to

Computer Facts @computerfact

concerned parent: if all your friends jumped off a bridge would you follow them? machine learning algorithm: yes.

Tweet

3/15/18, 14:20

Thank you! - jtesic@txstate.edu

+

 \sim

