
➢ COVID-19 school reopening decisions were difficult for 

policymakers since there was no consensus on the impact 
of school reopening on the spread of COVID-19

➢ Learning loss was documented in many states including 

Texas

➢ If we can identify most impactful factors on learning 

loss from publicly available data sources during 

pandemic, we can help policy makers make more 

informative decisions on learning recovery
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Research Questions

➢ Add STARR exam scores for 2022 to

confirm the resilience factors effects

➢ Update Census Block Group data for

2020 to grasp the characteristics of

socioeconomic factors up-to-date

➢ Compare outcome for missing values and

pre-processing approaches
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➢ Learning loss is calculated by getting STARR score differences

➢ Math shows more severe learning loss throughout the most student groups compared to Reading

➢ 3 classes label has been created: ➢ Can we quantify the impact of the mode of 

instruction(hybrid, remote, in-person) on the learning loss?

➢ Do school district reopening decision influence the 

learning loss experienced by students?

➢ Are students from low-income background and minority 

students experience more learning loss? 

➢ Do students from different grade level experienced 

learning loss differently?

Figure 2: Number of Predictors Selected by 9 feature selection methods

Conclusion

Data Acquisition and Integrations

Data are acquired from 7 different sources below and 

integrated by matching School District ID and County 

FIPS Code with 79 variables from 1,165 school districts 

in 253 counties:

➢ STAAR test results, math and reading, by grade in 2019 

and 2021 from the Texas Education Agency 

➢ COVID case data, # of students on campus reported to the 

Texas Health and Human Services per county 

➢ Student race/ethnicity, Title 1/Free lunch, Teacher-Student 

ratio per district from Common Core Data from the 

National Center for Education Statistics(NCES) 

➢ Local Area Unemployment Statistics(LAUS) per county 

from U.S. Bureau of Labor Statistics 

➢ Average Daily Attendance(ADA) per district from Texas 

Education Agency

➢ 2010 Census Block Group data from Texas Education 

Agency/Census Bureau

➢ Elementary and Secondary School Emergency 

Relief(ESSER) Grant from Texas Education Agency

Findings:

➢ The most impactful predictors for math are.

the ratio of students on campus on 

10/30/20 Covid aid in 2020, student’s race, 

reduced-price lunch eligibility 

➢ The most impactful predictors for 

reading are Covid aid given in 2020 and 

2021, reduced-price lunch eligibility, and 

student’s race, the student ratio on campus 

on 09/28/20 and the ratio of pre-k students. 

The most impactful predictors are identified 

using 9 different feature selection methods:

➢ Filter Methods:

Variance Threshold

➢ Embedded Methods:

L1 (Lasso) Regularization

Random Forest Feature Importance

➢ Wrapper Methods:

Permutation Importance - Random Forest

Permutation Importance - Ridge

Recursive Feature Elimination - Random Forest

Recursive Feature Elimination - Ridge

Sequential Feature Selection - KNN

Sequential Feature Selection - Ridge

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝑐𝑜𝑟𝑒 2021 − 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝑐𝑜𝑟𝑒 2019

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝑐𝑜𝑟𝑒 2019

Loss < 25th 75th < Gain25th percentile ≤ Expected ≤ 75th percentile

Figure 1: Learning Loss % for Math(left) and Reading(right) for group of students: Title 1, Poverty, Free Lunch, Special Ed, Hispanic, 

Black, White, Asian

➢ The state-of-an-art gradient boosting

models were built on the feature sets

selected from 9 methods to examine

dimensionality reduction effects on

predicting learning loss

➢ Hyperparameters such as tree structure

constraints, learning rate, L2

regularization were tuned to avoid

overfitting and increase accuracy

➢ Feature space does not have significant 

influence for performance of the gradient 

boosting models
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Figure 3: Four Gradient Boosting Models scores for 

Math (top) and Reading (bottom)
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