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Abstract—Trends and communities in social media networks
shape news cycles, politics, public governing, and economy these
days. There is a wealth of information in the way users interact
in the large social media networks, and state-of-the-art of mining
network data from e.g. Twitter platform is limited by the narrow
field of research or computing power. In this paper, we describe
the new end-to-end Twitter network data management pipeline.
We propose a scalable way to gather, store, and model rich
relationships from Twitter networks. We also propose to analyze
Twitter data using a combination of graph-clustering and topic
modeling techniques at scale using multiple data science methods
for graph construction and tweet data processing. We evaluate
the proposed system on over 9 million tweets over five different
Twitter datasets. We invite the community to add more features,
as this end to end pipeline is released as an open source
gitHub repository pytwanalysis [1]], and as a python pip package
pytwanalysis [2]].

Index Terms—Graph Construction, Social Network Manage-
ment, Graph Analysis, Community Discovery,

I. INTRODUCTION

Social media platform enables users to discuss news topics
and trends with friend groups or communities of people. It
also allows people to connect on common interests, share
information, and influence each other all over the globe. The
large number of users, and even larger number of content units
(posts, tweets) commentated on and propagated create inter-
esting database for researchers to mine and bring important
insights about human behavior, marketing, linguistics, industry
trends, brand monitoring, politics, etc. The Twitter platform
provides a fast condensed exchange of data, information, and
opinions. We have witnessed how much Twitter’s discussions
and topic trends shape political and commercial campaigns,
public policy issues, and marketing strategies for businesses
and governments. It is not a straightforward path: information
filtering on all social media platforms presents users with the
content items most likely to generate further engagement, and
users do not know what gets edited out. The rise of social
media filter bubble effect makes it harder to separate useful
information in social media data from irrelevant data. Current
tools used for Twitter analysis focus on the specific project,
tend to analyze the data inside a well defined bubble, and fail
to generalize the end-to-end process.

In this paper, we propose to scale the efforts on network
analysis beyond topic, time, or user group focus. We introduce
a scalable way to gather, discover, analyze, and summarize
joint sentiment of the Twitter communities. The proposed

approach allows researchers to guide the inquiry and data gath-
ering from Twitter, and graph network construction. The con-
tribution of the paper is the data science processing pipeline
for Twitter data and a suite of graph-clustering and topic
modeling techniques improved for large datasets, and robust
content analysis of noisy communities on Twitter released as
(i) an open source code [1] and (ii) a software package [2] for
general use. We introduce a way to gather, store, and model
rich relationships from Twitter networks at scale. We innovate
the state-of-art analysis of Twitter data and combine graph-
clustering and topic modeling techniques at scale.

Section [[Il summarizes state-of-the-art efforts in social net-
work analysis, graph clustering, topic modeling, and Twitter
data processing at scale. There are four major parts of the
pipeline, as outlined in Figure [I] Data Management presents
data science aspects considered for the pyrwanalysis design:
managing semi-structured tweet data at scale, and specific
improvements to data cleaning, ingestion, interpretation, and
storage to improve efficiency, as described in Section
and illustrated in the data management block in Fig. [I]
Network Analysis focuses on graph network construction,
graph analysis, and visualization. First, we propose methods
for multi-modal network construction where an edge in the
graph can be constructed from a variety of connection modes
(e.g. retweets, replies, quotes, mentions, and hashtags). Next,
we propose method for community discovery at scale that
combines aspects of several graph-based community detection
approaches. Finally, we introduce a suite of visualization and
graph reduction techniques to help interpret the meaning of
the resulting community labels, as described in Section
and illustrated in the network analysis block in Fig. [T} Topic
Analysis addresses the semi-structured nature of tweets e.g.
short, slang-, acronym-, and symbol- rich modes of expression,
bursting with misspellings, icons, and symbols in Section
illustrated by the topic analysis block in Fig. [T] Section
focuses on the reproducibility steps for anyone using the
released software package pytwanalysis [2] to execute the
pipeline steps: tweet extraction, cleaning, storing of tweets
in MongoDB, graph-clustering, topic discovery, and visual-
ization. Data Visualization block in Fig. [I] summarizes the
pipeline visualization features, and examples of the results are
described in Section for five different Twitter databases
[3]] of over 9 million tweets combined.
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Fig. 1. pytwanalysis diagram illustrates all the steps and methods available for tweet extraction, cleaning, storing of tweets in MongoDB, graph-clustering,

topic discovery, and visualization [2]).
II. RELATED WORK

Twitter social media platform influence compelled the data
science research to focus on social media analysis. The bulk
of the research is focused on the message and the user,
i.e. content of the tweets and communication trends among
users on the platform [4]. Research work to date has used
trends in Twitter for detecting communities and opinions about
climate change , to understand the influence of fake news in
Twitter during the 2016 US presidential election [[6], analyze
the COVID-19 and the 5G Conspiracy Theory [7], and the
COVID-19 Twitter narrative in the U.S. government [8]]. Twit-
ter communication trends, generated content, and interactions
influenced a variety of aspects of social life, and researchers
focus on community analysis and topic discovery to model
public opinion in social media [9], geography [I10]], health
(T1]], linguistics [12]], economics [[13], government policy [14],
and political consumerism [I5]. Visualization tools to date
offer useful visualizing options for existing graphs [16], but
can demonstrate limited Twitter pipelines. NodeXL for
example, is limited by OS and data size. Related work to date
has addressed singular aspects of the end-to-end Twitter data
analysis pipeline. Here, we create a scalable unified framework
for end-to-end gathering, processing, storing, multi-view anal-
ysis, community discovery, topic analysis, and visualization
tools that can support different directions of Twitter research
data at scale. The end user can easily use existing pip package
to analyze the rich subspace of twitter-verse of interest, and
it can enrich the existing pipeline’s open source code with
new features for one or many pipeline tasks.

III. DATA MANAGEMENT
A tweet document is comprised of multiple objects. Objects

retrieved at different dates and with different APIs can have
a different set of fields; e.g. deprecated fields still exist in
old retrieved files. The tool to manage such data must be
able to adapt to the dynamic nature of the Twitter data. We
propose to implement a NoSQL solution using MongoDB.
MongoDB is a schema-less document-oriented database that
has shown to scale well with data size in terms of inserts,
updates, and simple queries [I8]. MongoDB does not need to
have a structure limit. That allows for flexibility of the database
implementation for Twitter data, as the fields are dynamic in
Twitter documents. Researchers have used MongoDB for Twit-
ter data analysis , , and for the limited scope of storing

unstructured textual data [21]. MongoDB does not offer simple
functionality for joining collections, and MongoDB databases
do not perform well on aggregation queries [18]], [22]. In this
paper, we propose to use MongoDB and take advantage of the
flexibility with unstructured data, and to create multiple data
aggregation collections to address aggregated data retrieval and
joins. The proposed approach scales and facilitates analysis
while improving data retrieval performance.

The Data Management block is in charge of extracting
data from Twitter. It supports two data acquisition modes:
(i) collect data using Twitter’s API and (ii) collect data from
offline Twitter JSON objects. For (i), it supports calls to three
different endpoints of the Twitter’s Search API: the 7-Day
search product from the Standard API, the 30-day search
product from the Premium API, and the Full-archive search
product from the Premium API. The Data Management block
also controls all the pre-processing of the data and storage in
the database. It saves the raw data extracted from Twitter as
well as derived versions of the data that are used to help with
the network and topic analysis.

A. Data Collections
MongoDB has the concept of collections, which are a

grouping of MongoDB documents. Collections are similar to
tables in RDBMS systems, but in MongoDB a schema is not
enforced. Even though the schema doesn’t have to be rigid,
a collection usually stores data with a similar purpose. We
propose the use of several collections for data analysis and
visualization, and to speed up aggregation queries. We create a
handful of collections to store cleaned and transformed data in
the data pipeline process. Few of the collections share similar
fields by design, as it enables post-processing queries to run
easier and faster.

The collections are divided into four types: Core Col-
lections: Collections that store the core information needed
for analysis. Collections in this group include the rweet,
focusedTweet, tweetWords, tweetConnections, tweetHTCon-
nections, and users collections; Aggregate collections: Col-
lections containing pre-aggregate data to help with EDA.
Collections in this group include the agg_tweetCountByFile,
agg_tweetCountByLanguage, and agg_tweetCountByMonth;
Administrative collections: Collections that save metadata to
help administering the data being loaded into the database.
Collections in this group include the adm_loadStatus,



adm_loadedFiles, and searches collections; and the Temp
collections: Auxiliary collections used to improve the com-
plex data retrieval queries. Collections in this group in-
clude the rmpEdges, tmpEdgesTweetlds, tmpEdgesHTFreq,
and rmpEdgesWordFreq. The collection fweet stores the raw
data from the Twitter JSON files, with no modification, and
the collection focusedTweet stores the focused data extracted
from the original documents. It is useful to have a separate
collection for the focus data as it (i) decreases the amount
of data stored in one collection and increases the query’s
performance, and (ii) enables core columns with a standard
name processing. The field that contains the original tweet
message can have different names, and standardizing that name
in the focused collection streamlines the pipeline processing.
Details of the data dictionary and description of every field
and collection in the proposed database are available in the
package documentation [?2].

B. Pipeline Performance Features

In order to deal with the performance challenges while
inserting and retrieving data from the collections, we propose 4
different improvements in the pipeline: 1. Recovery Process:
The pipeline includes a recovery logic to make sure that the
processes doesn’t have to be re-run from the beginning in
case of a failure. While inserting into the fweet collection, a
sequence number gets attached to each tweet. Every time any
processes need to run, that sequence number is used to control
what has already been processed or not. If something fails,
the logic will be able to identify the last sequence number
processed and continue from there. That logic is available
for all the core collections and is driven by the values stored
on adm_loadStatus. 2. InsertOne vs InsertMany: MongoDB
gives users the flexibility to insert records one by one using
insertOne method, or insert multiple records at a time using
insertMany. insertMany method scales better for large datasets,
but we need to store all data in the memory first. We propose
the solution to insert data in large groups: retrieve, process and
save record in the memory, and when N records are saved
call insertMany and write them to MongoDB. To avoid
both problems and take into consideration the differences
in hardware specification, in pytwanalysis package N is a
configuration parameter, which is the maximum number of
records to be inserted at any given time. This allows the
system to be used on anything from laptops (smaller N) to
workstations (larger N). 3. Indexing: Aggregation, filtering
and retrieval processes in MongoDB databases can cause
a bottleneck depending on the amount of data and filters
used. The pytwanalysis package improves the processes by
automatically indexing strategic fields at database creation,
e.g. seq_no (a numeric sequence value used in the recovery
process), tweet_id_str (an unique id from Twitter application
that identifies each tweet), user_id_str (an unique id from
Twitter application that identifies each user). The times to
execute queries and to create the derived collections (results of
aggregation or filtering) has significantly improved with index
support. 4. Temporary Collections: Not all aggregations and

queries can be sped up with indexing. For a query to retrieve
hashtags that were used by users from specific edges in a
graph, it will take way too much time to execute the query for
a large graph network. We propose the following: (i) create a
temporary collection with all the edges for that specific graph;
(2) create temporary collection that saves all the tweet Ids for
those edges. Now, the resulting data is easily aggregated to
count the hashtags used for those tweets. After implementing
these methods, the average execution time in pytwanalysis
decreased by 60%.

IV. GRAPH NETWORKS CREATION, ANALYSIS, AND

SUMMARY
Network Analysis block in Figure [I] consists of 3 sub-

blocks: Network Creation (Sec. [[V-A), Community Discovery
(Sec [IV-B)), and Network Summary ( [[V-C).

A. Network Creation
The pytwanalysis package creates multiple undirected net-

works for the same set of Twitter records as shown in Fig-
ure 2| The edges of the networks are saved in the collections
tweetConnections, and tweetHTConnections (section [I1I-Al).
We adopt Twitter users and hashtags as vertices, and create
different networks based on what is interpreted as an edge’s
information.
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Fig. 2. Networks created from the different user connections.

The Retweets Only network method inserts a weighted
edge between users based on their retweets. For two Twitter
users, x and y, edge (x, y) gets created in G when either x
retweets a tweet from y, or y retweets a tweet from x. The
weight(x, y) will be the total number of retweets from each
direction. Vertices with a high degree will represent users that
were retweeted frequently. The Quotes Only, Replies Only,
and Mentions Only network methods are created similarly
to the Retweets Only network, but with each weighted edge
being the connection between two users by quotes only, reply
only, or mentions only, respectively. In the the mentions only
network, even if a user y doesn’t tweet, retweet, or reply to
anybody, they can still show up as a high degree vertex in the
mentions network in case thousands of other people mentioned
them in their tweets. The All User Connections network
method combines all user connections together: retweets,
quotes, replies, and mentions. Edge weight is the total number



of retweets, quotes, replies, and mentions interactions. The
Hashtag Connections network creation method identifies
hashtags that are frequently used together. Let #x, #y, and #z be
the hashtags used in a single tweet. The hashtag connections
network method will create the pairs {#x, #y}, {#x, #z}, and
{#y, #z} for this single tweet. Edge weight indicates how many
times two hashtags were used together.

B. Community Discovery

We use three different methods of clustering for analysing
the data and evaluate the performance of the methods using 4
primary and 3 secondary measures.

Community Discovery Methods: e Louvain Community
Detection method [23]] is a heuristic method based on mod-
ularity optimization that has been shown to outperform other
known community detection methods in terms of computation
time without losing quality. The Louvain method is a greedy
optimization method with a runtime that increases close to lin-
early with the number of vertices in the network, and it has ex-
hibited good summarization power compared to other methods
[24]. The outcome of the Louvain Community Detection is a
set of disjointed communities with densely connected vertices.
e Spectral Clustering approach performs the kmeans cluster-
ing method on k eigenvectors corresponding to the smallest
eigenvalues (not 0) of the Laplacian of the adjacency matrix
of the graph. Laplacians can be defined in multiple ways,
and based on that, there exist many different implementations.
Spectral Clustering depends on the k, the number of clusters
desired, and we select k that maximizes the eigengap [25].
The output is a set of disjointed communities with densely
connected vertices. The method has a high computation time
and can only be used in fully connected networks, as it uses a
similarity matrix to identify how similar the vertices are. We
use the method SpectralClustering from the sklearn [26] pack-
age, and in the output each vertex gets assigned to a cluster
label. To transform the graphs into adjacent matrices that can
be sent as parameters to the SpectralClustering method, the
to_scipy_sparse_matrix method from the networkX package
[27] was used. e Top k Degree Vertices’ Neighborhoods
(TN-Neighborhoods) Super users shape Twitter communities
and guide topic discovery and development, as 80% of all
tweets come from just 10% of all U.S. Twitter users [28].
These super users tweet 138 times per month, and the median
Twitter user tweets twice per month [28]]. Super users are
found to be active in multiple communities, as community
connections vary. Graph-theoretic relaxation of the concept of
cluster graphs introduced overlaps between the clusters [29].
We propose a novel cluster overlap approach for building
communities around super users with relaxation criteria that
a user can belong to multiple communities. The influence
of vertex v is defined by its degree in the graph, and we
consider the vertices with the degree higher than k£ as new
community centers of the graph. For a network graph G, and
a vertex v, v € V A|v| > k, create a neighborhood sub-
graph N (v). The sub-graph will contain all vertices that are
connected to v and all the edges that connect the vertices in

the sub-graph together. We grow these communities around
the highest degree vertices in the dataset. Since users can
be connected to multiple high degree vertices, the result of
this method is a set of overlapping communities, and the
communities capture discussions initiated or related to a set of
high influence vertices v. The visualization of high level steps
of the approach is illustrated in Figure
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Measures of Performance: We use 4 measures of per-
formance for the community detection: Separability, Density,
Clustering Coefficient |30|], and Power Nodes Score , and 3
graph characteristics measures: the average degree of vertices,
graph clique size, and number of cliques. e Separability mea-
sures the ratio between the edges of the community (internal
vertices) and the edges of the vertices of the community
that are pointing to the outside, under the assumption that
solid communities would be well-separated from the rest of
the network. Let G[V] be the induced sub-graph of graph
G for vertex subset V, where V was created from one of
the clustering methods. And let E,, be the number of edges
in G[V], and E. the number of edges on the boundary of
G[V]. Then we calculate separability as sep = . Density
measures how well connected the vertices are. Let G[ V] be the
induced sub-graph of graph G for vertex subset V, where V was
created from one of the clustering methods. And let E,,, be the
number of edges in G/V], and V,, the number of vertices in V.
Then we calculate density as den = #E:_I) Power Nodes
Score identifies graphs that are highly connected through a set
of highly connected vertices. A high score will indicate that
the top degree vertices of the graph are highly connected to
all other vertices in the graph. Let G[V] be the induced sub-
graph of graph G for vertex subset V, where V was created
using the TN-Neighborhoods approach for the highest-degree
k vertices. If V,, is the number of vertices in V, and n the
number of vertices in the original graph G, the power vertices
score is calculated as pns = <=. Note that k is the number of
clusters for all clustering methods and we use the same k in
all methods for comparison. Average Clustering Coefficient
is the average of the local clustering measures for each vertex.
The local clustering of each vertex in G is the ratio between
the triangles that actually exist and all possible triangles in
its neighborhood [31]]. It was proposed as a goodness metric
on the premise that pairs of vertices with the same neighbors
are likely to be connected to each other. Average Degree of
Vertices quantifies the average degree of all vertices in G, and
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Fig. 4. Graph reduction samples from the Austin dataset. Vertex Degree graph reduction outcome: filtered all edges connecting two vertices with degree less
than 115 (left); Community Percentage and the Vertex Degree graph reduction outcome: every community found in the graph reduced by 70%, and then every
edge with degree less than 25 removed (center). Edge Weight and the Community Percentage aggregation: every edge with weight 1 removed, followed by

the community reduction by 2% (right).

measures graph connectivity. Let V' be the vertex-set of G,
and n the number of vertices in v Then calculate the average
degree of vertices as av,, = M Graph Clique
Size measures the number of vertices in the largest clique of
G. A clique C in an undirected graph G, is the induced sub-
graph of G where every two distinct vertices in C' are adjacent.
In social networks, cliques could represent groups of people
where everyone in the group has a connection with every other
person in that same group. Number of Cliques is the number
of maximal cliques in G.

C. Network Summary

Large networks contain millions of vertices that connect to
each other in some way [9]. Community discovery allows us to
analyze one community at a time. When a community contains
tens of thousands of vertices, visualizing the community as
an entity does not provide a lot of information. Grouping of
vertices enables us to conduct meaningful community analysis.
The specific technique employed depends on the research
question we are trying to answer, what will have a low cost if
discarded, and what the aggregation is meant to accomplish,
as they can focus on graph aggregation to maintain the
same structure, identify patterns, maintain the most salient
information of the original graph, or focus on the most
influential vertices. Various graph aggregation approaches have
succeeded in reducing the graphs without major structural
changes, while reducing the high processing cost [24]f]. In this
paper, we propose and implement context-aware graph reduc-
tion methods that allow for fast and meaningful visualization:
o Community Percentage: A percentage of vertices of every
community found in a given graph is removed, starting from
the lower degree vertices. This approach reduces the number
of vertices to plot, without changing the overall structure of
the data. The Louvain method was the chosen algorithm to
calculate the communities, as it has been shown to have good
summarization power and excellent execution time [24]; e
Edge Weight: Given a number x, we remove all edges (u,v)
with a weight less than or equal to x, weight(u,v) <= .
Removing “weak links,” edges with a small weight allow a
visual analysis of vertices with stronger connections; and e
Vertex Degree: Given a number x, we remove all vertices v
with degree less than or equal to x. Removing edges related
to low degree vertices will allow the visualization to reveal

vertices that interact with more vertices. Figure [] shows three
graphs created from the exact same vertices and edges, but
using different reduction techniques.

V. ToPiC ANALYSIS

ePre-Processing Methods Tweet text was cleaned before it
was used for topic modeling as follows: (i) Remove links by
cleaning everything that starts with htfp, (ii) remove hashtags
by cleaning everything that starts with #, (iii) remove mentions
by cleaning everything that starts with @,(iv) remove retweet
symbols at the beginning of retweet messages, (v) remove any
symbols, punctuation, return characters, extra spaces, special
characters, and numbers, (vi) remove stop words, and (vii)
lemmatize words. eTopic Model We have used the Latent
Dirichlet Allocation (LDA) [32] module from the gensim
package [33|] to train the topic model: (i) create a set of
documents where each document corresponds to one tweet,
(ii) pre-process the content of each document as explained
in Pre-Processing Methods, (iii) create a term dictionary of
the corpus, where every unique term is assigned an index,
(iv) convert the list of documents into a Document Term
Matrix using the dictionary prepared in the previous step,
(v) choose the number of topics, (vi) and train the model
using the gensim package [33]. Given a set of documents,
the LDA model returns a set of topics, each with a set
of words with a probability score that shows how likely
each word can describe the topic. eEvaluation pytwanalysis
package implements the coherence metric c_v as an automated
measure of evaluation in a large number of experiments as
it was shown to outperform other existing coherence metrics
[34]. eAggregation Methods People use the same hashtag
for different discussions threads. The LDA model does an
adequate job classifying topics for well defined documents,
where the colloquial nature of Twitter data poses a challenge.
To mitigate this issue, pytwanalysis pipeline pre-aggregate the
tweets as the first level of topic discovery process using three
different methods: (i) graph-based hashtag communities, (ii)
graph-based user connection communities, (iii) and filters by
time period, user’s screen_names, or hashtags. The graph-
based hashtag communities aggregation uses one of 3 methods
from Sec. to create a network of hashtag connections and
separate them using the clustering techniques. Even though the
hashtags themselves can be difficult to interpret, they can be



great indicators of topics. The graph-based user connections
aggregation uses one of 3 clustering methods from Sec.
to create a network of user connections and separate them
using the clustering techniques. Users that are very connected
to each other tend to share similar topics. The filters aggrega-
tion separates the tweets into groups that are bound based on
the filter used. Time period filter, for example, separates the
dataset into tweets that were created within a date range. That
way it will be possible to see the topics being discussed for
that specific period. We have designed the pipeline so that the
three aggregation techniques can be used as stand-alone or in
combination. Note that the pytwanalysis pipeline parametrised
the choice of multiple different network creation algorithms,
community discovery algorithms, and topic modeling aggrega-
tion methods. An example of this modular pipeline selection
is to aggregate the tweets based on the Louvain communities
found in the replies only networks for a certain time period.

VI. PIPELINE FEATURES

The pytwanalysis package provides a streamlined way for
users to access the functionalities of all pipeline blocks. Twitter
data analysis pipeline consists of several blocks, as illustrated
in Figure (1| In the Data Management block, tweets are down-
loaded from the source and saved as JSON objects. The Twitter
JSON objects are cleaned, organized, and loaded into a Mon-
goDB database. Next, in the Network Analysis block, network
creation, community discovery, and graph summarization and
visualization are available. The Topic Analysis block supports
topic discovery using LDA, and word and hashtag frequency
analysis. The Data Visualization block combines the analysis
of all previous block and outputs the analysis of the data. It
outputs exploratory data analysis; files with word and hashtags
frequency analysis; wordclouds, barcharts, and timeseries visu-
alizations explaining the data; networks analysis files including
community separation, graph visualization, and vertices and
edges details; and full analysis automation that allows the user
to run a full analysis with all components without having to
run any of the analysis individually. The pipeline is subject
agnostic: data acquisition and processing are determined by
the end user based on the research question they try to answer.
The pytwanalysis package is available for installation at pip
[2]], the code is available in gitHub [1]], along with the detailed
documentation. The pytwanalysis package contains 4 classes:
(i) TwitterDB: This class will take care of all the MongoDB
activities. It will load tweets from JSON files, create new
collections and indexes, clean and transform data, query data,
and export data; (ii) TwitterGraphs: This class will take care
of graph related tasks. It will analyze graphs, export graph
metrics, create sub-graphs, create clusters, calculate cluster
metrics, plot graphs, and reduce graphs; (iii) TwitterTopics:
This class will take care of topic discovery related tasks. It
will train the LDA model, and print graphs with word and
hashtag frequency; and (iv) TwitterAnalysis: This class will
inherit the methods of the other three classes and will be in
charge of automating the creation of the analysis files and
folder structure. The pytwanalysis package enables parametric

configuration so multiple methods and approaches can be
tested, and it integrates the following packages: networkx
[27], scikit-learn [26], gensim [33]], NLTK [35]], Community
Discovery [36]. Details on the package use, data collection,
and automated analysis are provided in the documentation [2].

VII. DATA ANALYSIS AND RESULTS

[ Dataset [[ Random | Austin | BlJ-en [ BIl-pt | Covid |
[Tweet Count || 160,066 | 310,601 | 242,056 | 267,101 | 8,123,104 |
TABLE T

DATASETS USED IN THE EXPERIMENTS

Five datasets were used as case studies for the experiments
[3]]: Austin, a dataset with over 300,000 tweets that are related
to the hashtags #austintexas, #atx, #austintx or #atxlife; BJJ-
en, a dataset in English with over 200,000 tweets that are
related to the hashtags #BJJ, #jiujitsu or #jiu-jitsu; BJJ-pt, a
dataset in Portuguese with over 200,000 tweets that are related
to the hashtags #BJJ, #jiujitsu or #jiu-jitsu; Covid, a dataset
with over 8 million tweets that are related to the hashtags
#Coronovavirus, #Covidl9 or #Covid-19; and Random, a
dataset with over 100,000 random tweets that are not related
to any particular subject. Next, we run pytwanalysis package
on the data, and present the results. For each dataset, 6 types
of networks are created, as outlined in Sec.
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Fig. 5. Subfigures correspond to five datasets: the number of Vertices and
Edges for each type of network is illustrated in 2D space as a colored circle.
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Fig. 6. Execution time in seconds for three clustering methods as a function of
the number of vertices in the graph. Spectral clustering fails for large graphs
due to known eigenvalue computation issues in the algorithm.

Figure [5] summarizes the number of vertices and edges
for each type of network for each dataset. The number of
edges for each of the networks seems to follow a pattern,
with the smallest network always being the quotes network,
followed by the replies network, then retweets, mentions,
and all connections. The richer the network, the higher the
number of vertices and edges. Hashtag connection networks
are more dense as they have a relatively small number of
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vertices (frequent hashtags) and a high number of edges.
Observe x = y slope on all graphs (number of vertices is
close to number of edges). All datasets that were collected
using term and topic search are more dense (number of edges
is higher) than random dataset collection, as there is no
connectivity in the community for random tweets. Next, we
apply the three clustering algorithms described in Sec.
on each of the networks. Figure [f] shows a comparison of
the execution time of each clustering method. The Spectral
Clustering method has the highest execution time, followed
by the Louvain method, and then TN-Neighborhoods. Both the
Louvain and TN-Neighborhoods methods seem linear, but the
TN-Neighborhoods has a much slower slope. The execution
time experiments were done on a Windows machine, with
the Intel(R) Core(TM) i-9900K CPU @3.60GHz, and 64G
of RAM. Figure [7] shows the metrics for the three types of
clustering methods for the Austin dataset for all types of
networks. The hashtag connections network has the highest
score for separability and average clustering coefficient, but
has lower density. Separability is similar for all other network
types. All six types of networks follow similar values for the
power nodes score.

Graph Reduction Experiment: We compare graphs before
and after the use of the reduction techniques shown in Sec.
for the Austin dataset tweets in the month of May, using the
retweet connections network. The original graph without any
reductions has a total of 10,448 vertices and 11,977 edges.
We then compare the metrics for the original and reduced
graphs: the number of vertices, number of edges, average
degree vertex, density, power nodes score, vertices and edges
compression percentage, and the top 1% vertices similarity
calculations are compared. Fig. [§] shows a comparison of
the different reduction techniques and the effect caused on
the resulting compressed graph. The number of vertices and

edges decreases as the level of reduction for each method
increases, as shown in Figure[8] The compression occurs more
gradually for the Community Percentage method compared
to the others. The average degree vertex increases for the
Vertex Degree method as the graph becomes more compressed.
This behaviour is expected, since the vertices that are only
connected to lower degree vertices are getting removed from
the graph. The opposite seems to occur for the Edge Weight
method. Since the edges with low weight are getting removed,
vertices that had high connectivity because of the pendant
vertices will have their degree lowered. The density of the
graph increases as the reduction methods are applied, and
the top vertices’ similarity decreases. Figure {] shows three
graphs created from the exact same vertices and edges, but
using different reduction techniques.

Topic Discovery: We used our graph-based aggregation
technique shown in section [V] to find topics within our
datasets. Figure [0 shows an example of visualizations of a
certain topic found in a community from the Austin dataset.

VIII. SUMMARY AND CONCLUSIONS

In this paper, we present a scalable way to gather, discover,
analyze, and summarize large datasets from the Twitter social
media platform. The system foundation is a suite of techniques
in social network analysis, and the final product is a scalable
end-to-end data science pipeline that adapts to the dynamic
and semi-structured nature of Twitter data, release as an open
source code [I]] and pip python package [2]]. The pipeline was
designed to be used by a wide range of researchers that are
interested in analyzing Twitter data for answering questions on
several areas of study. Future work includes the package being
expanded with more functionality, such as sentiment analysis,
fake news detection, and support for other Twitter APIs.
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