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Abstract—Recent advances in deep learning for visual recog-
nition demonstrate high performing pipeline for building and
deploying well-performing content models. These advances come
with underlying assumptions of the data characteristics pertain-
ing to consumer image and video and availability of the large
set of annotated data. In this paper we show how to apply
lessons learned in the consumer domain to overhead maritime
video corpora. We present how to successfully tune deep learning
network to overhead maritime domain and tune parameters to
new domain characteristics to achieve high performance metric
with smaller set of domain annotations. This approach improves
the state-of-the-art metric by 80% on maritime IPATCH data [1].
Next, we present challenges and propose several approaches on
user collaboration for maritime asset identification, and introduce
the notion of persistent and intermittent models.

Keywords-Training, Collaboration, Data models, Multi-layer
neural network, Machine learning, Computational modeling
Machine Vision, Data Science

I. INTRODUCTION

Machine Learning algorithms will always do exactly what
one instructs them to: they will learn by example, and the
models they produce will be an exact product of the train-
ing examples that you provided. Complex Machine Learning
algorithms, such as Deep Neural Networks (DNN), require a
significant number of labeled training samples to perform well.
Recent advances have shown that DNN systems perform with
a superb degree of accuracy in visual object detection and
recognition benchmarks, having been trained on millions of
training examples [2]–[4]. The effectiveness of the Deep Con-
volutional Neural Networks (DCNNs) has been demonstrated
for various computer vision tasks such as image classification,
object detection, semantic-segmentation, human body joint
localization, face recognition and so on [5]. Amassing and
labeling massive amounts of data for each of these applications
in a single domain has led to a set of breakthrough benchmarks
e.g. Pascal VOC [6], ImageNet [7],and COCO [8]. These
benchmarks were complex and expensive in nature, requiring
overwhelming amount of human time and resources, while
focusing on consumer imagery. state-of-the-art for DCNN
systems is based on consumer visual data e.g. all systems and
benchmarks focused on imagery created by consumers using
their hand-held devices. When considering domain translation
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for other applications, one has to consider the replication pro-
cess of similar scale. In most of the domains that come to mind
- news, agriculture, archived cultural data, climate science,
medical science, astronomy, space, underwater exploration,
aerial imagery, satellite imagery, underwater imagery, drone-
captured imagery - there exist no crowd sourcing effort or
labeling uniformity to achieve comparable benchmark at such
a large scale.

Fig. 1. State-of-the-art in Deep Convolutional Neural Networks (DCNN)
is consumer data: slight change in operating conditions (overhead camera,
cloudy day, low resolution) causes the system to identify boat as sports ball
in one frame and kite in the other.

In this paper we consider maritime domain application
where there is no maturity of annotated corpus or clear
definition of semantically relevant objects. We utilize transfer
learning approach, a machine learning method designed to
mitigate the lack of training data. We start with reusing
an existing pretrained model from consumer domain as the
starting point for a model on a second task [5], [9]. Vast
compute, time, and data labeling resources are required to
develop neural network model from scratch. Since we do not
have this type of data labels available in maritime datasets. we
will investigate the success of transfer learning from consumer
domain, where models were trained on images captured by
hand held devices in social or land-bound settings, to maritime
domain, where videos are taken by overhead camera mounted
on an unmanned airborne system or a large ship.

Collaborative tagging describes the process by which many
users add labels in the free-form to shared or related content
[10]. Collaboration among diverse groups have been analyzed
to show the need for simplified information sharing. Here,
we propose the foundations for collaborative approach to
sharing pretrained models based on consumer datasets to non-
consumer domains, and tools that enable users to adapt those



models to their own application within the target domain, as
illustrated with the proof of concept in maritime domain.

II. RELATED WORK

Recent DCNNs [2], [4], [11]–[15] have raised the bar with
respect to what is expected of an image and video achieve-
ments in regards to machine learning. However, DCNNs con-
tinue to exhibit short-comings which has spurred great activity
in the research community, but limited its effectiveness in real-
life situations. Due to the large number of network parameters
that need to be trained, DCNNs require a significant number
of training samples. For tasks where a sufficient number of
training samples is not available, a DCNN trained on a large
dataset for a different task is tuned to the current task by
making necessary modifications to the network and retraining
it with the available data [5], [16]–[19]. Deep convolutional
neural networks for overhead imagery have been used to
produce pixel-wise classification maps of satellite imagery
[20]. Authors compensate for imperfect training data through
a two-step training approach: CNNs are first initialized by
using a large amount of possibly inaccurate reference data, and
then refined on a small amount of accurately labeled data to
provide fine-grained classification maps [20]. One shot learn-
ing is another name for learning with few labels [21]. Lately,
multiple groups proposed an one shot learning approach for
deep learning setup, and showed it to be consistent with normal
methods for training deep networks on large data [9].

III. DOMAIN TRANSLATION CONSIDERATIONS

a) Domain Analysis: Low resolution quality of oper-
ational data, size of objects of interest, view occlusions,
and crowded scenes degrade the performance of state-of-the-
art DCNN when applied to overhead sensor and shipboard
data. For Maritime datasets, the best algorithms struggle with
objects that are small (distant objects) or with the distorted
view (sun glare), which are common problems in ocean
environments. Humans have no issues in recognizing objects
in videos with similar conditions, but state-of-the-art machine
learning algorithms break when there is a slight change in the
operational environment. Figure 1 illustrates how the state-of-
the-art DCNN model [15] trained on consumer data classifies
same boat into Sports Ball and Kite categories in 2 different
frames.

Fig. 2. IoU illustration for object localization: yellow boxes are ground truth,
green boxes are detections.

b) Deep Neural Network Learning Considerations: Deep
neural networks trained on large corpora of labeled consumer
images provide a robust generalized modeling start, and ini-
tializing a network with transferred features from almost any
number of layers produces a boost to generalization [22]. In
our work, we rely on this finding and expand from a consumer
dataset using domain translation to non-consumer datasets
with our proof of concept in the maritime domain.

c) Evaluation Metric: Intersection over Union (IoU) is
an evaluation metric typically used to measure the accuracy of
object localization in an image, and it has been used in object
recognition benchmarks such as PASCAL VOC [6], ImageNet
[7], and COCO [8] benchmark. Any algorithm that provides
predicted bounding boxes as output can be evaluated using
IoU. IoU takes the set A of proposed object pixels within the
proposed bounding box by the detector and the set of true
object pixels B and calculates: IoU(A,B) = A ∩ B ÷ A ∪
B as seen in Fig. 2. In consumer benchmarks the detector
performance is a hit if IoU of proposed detection A and ground
truth B is larger than a threshold, typically 0.5 e.g. if IoU > 0.5
it is a hit, otherwise it was a fail. In the Section VI we evaluate
the performance of detectors using different measures of IoU,
and evaluate performance sensitivity for maritime domain.

d) Performance Evaluation: We adopt COCO bench-
mark evaluation metric [8]. We calculate the True Positive
TP (c) for class c as a proposal was made for class c with
probability higher than the threshold, and there actually was
an object of class c, and the IOU is larger than set threshold.
We calculate False Positive FP (c) for class c as : a proposal
was made for class c, but there is no ground truth object of
class c. False Negative FN(c) for class c as : a proposal was
made for class c, but it is lower than the threshold; or IoU
with the ground truth object for class c is lower than than IoU
threshold.

Thus, the average precision (AP) for set IoU as
AP (c) = |TP (c)|

(|TP (c)|+|FP (c)| . Thus, the Recall for set IoU

as Recall(c) = |TP (c)|
(|TP (c)|+|FN(c)| . The mAP (mean av-

erage precision) is computed over all classes. mAP =
1

|classes|Σclasses |TP (c)|
|TP (c)|+|FP (c)| for specific value of IoU and

threshold.

IV. TOWARDS COLLABORATIVE ASSET IDENTIFICATION

Modeling a dynamic domain, as discussed in the maritime
environment, is challenging. Consider the maritime piracy
monitoring scenario: there are multiple camera sensor feeds,
and multiple analysts are accessing all these feeds from dif-
ferent location and for different applications e.g. monitoring,
prevention, and alert. A Deep Neural Network framework is
inherently static, as described in Section III. Training is mostly
done in one location offline and the model is utilized for mass
consummation e.g. image-to-text, identify consumer object in
cell phone images or recognize a face. High confidence of the
trained model is ensured by a high number of training data
and context filtering.

Deep Convolutional Neural Networks for surveillance and
monitoring needs to be utilized in a more dynamic environ-



Fig. 3. Collaborative Training and Inference Tool (CTIT): The users add new domain-relevant datasets to the catalog used to identify data-sets on a computer
(left). This is can be done with directory browsing (center) or using a path input (right).

ment: the sensor feeds have greater variance than consumer
images. There is less labeled data available and the application
of machine learning models for asset localization and identifi-
cation varies due to the different surveillance goals. Users may
require localizing, identifying, monitoring assets, or generating
alerts. We identify the need to develop collaborative tools
aimed specifically at these unstructured domains. Especially
where collaboration across different agencies and seamless
sharing of models (without sharing data) can improve dif-
ferent maritime missions. We have developed two interactive
tools for analyst to foster this collaboration. The first tool,
Collaborative Training and Inference Tool (CTIT), enables the
building of more persistent models that can be shared among
collaborators. The second, Asset Identification and Monitoring
(AIM) Tool, enables persistent target labeling and intermittent
modeling for real-time asset monitoring.

A. Collaborative Model Refinement in Dynamic Scenarios

We have developed the Collaborative Training and Inference
Tool (CTIT) to aid the training and fine-tuning of Detectron
[24] models using domain-specific datasets, as well as infer-
encing those models on validation sets. The tool started out
as a simplified interface to Detectron to allow more effective
training. The tool aids in effective training by allowing analysts
of all skill levels to be able to interact with Detectron without
the need for in depth knowledge of the Detectron system.
Screen shots of the CTIT Tool are shown in Figures 3,5, 6,
and 7.

The Collaborative Training and Inference Tool (CTIT),
shown in Figure 3, is an easy to use interface for the domain-
specific training of the Detectron deep learning algorithms.
The analyst can navigate to their data locations on the system
using a directory browser and the CTIT will insert the data to
a data-set catalog. Advanced functionality of the CTIT allows
the analyst to edit configuration files used by the system using
”Config File Editor” functionality, as illustrated in Figure 5.
The tools are designed to aid novice users in configuring the
deep learning training module as it allows selection on all
valid and system supported options. We are currently working
on extending this tool to provide more information about the

meaning of the parameters and how that can influence the
training process. We plan to incorporate the findings from the
Section VI to aid the analyst in training the domain specific
module.

Collaborative Training and Interface Tool (CTIT) allows
analyst to seamlessly access, improve, and fine tune existing
models. Our goal is to enable seamless hand off of models
between collaborators. For example, one analyst may access a
specific maritime data (either new data or archived) and label
several maritime vehicles as different or identify imagery that
was captured under varying conditions (e.g. snowstorm, high
glare, night). The data then can be added to the existing best-
to-date model, fine tuned, re-evaluated on data, and leaves
it in the repository for the next analyst to use it in the
same manner. By the previous example this allows users
with different domain expertise and skills to seamlessly reuse
models. The CTIT enables analyst to select one of the three
options for training the model: (1) Start training the model
from scratch, (2) resume training an existing model from a
checkpoint, and (3) fine-tune the checkpoint to newly added
dataset, where each option initiates the call to different sub-
process of the deep learning system. All three options are
illustrated in Figure 6, as well as how the tool allows for
configuration files to be changed. In the design, we have
anticipated the wide variation in the dataset size, available
memory across the workstations and servers, and this option
allows analyst to adjust the batch size, iteration size, number
of loading workers for a specific training task. With these
parameters easily changeable any dataset size should be usable
as long as the analyst sets the parameters accordingly.

We have extended the Collaborative Training and Inference
Tool (CTIT) to support the experimentation and seamless
inferencing of models on the validation dataset or new dataset,
as shown in Figure 7. Analysts get to select where to store the
prediction(s) (modeling results), if to use GPU or CPU (”Don’t
Use Cuda” checkbox). If there is ground truth available for
the validation dataset, the ”Reference JSON” option is used
to generate evaluation scores from that JSON file. This easy
to use interface makes the evaluation of the analyst’s current



Fig. 4. AIM for Intermittent Modeling: Analyst can add new annotation and draw a new bounding box (left). The annotation will automatically label the
region that has the with highest IoU score with that bounding box (center). Analyst can choose to refine the label or make it more specific (right). [23].

Fig. 5. The Collaborative Training and Inference Tool (CTIT) model training
configuration setup: Analyst are able to seamlessly review all options for
configuration parameters and select the valid combination. This collaborative
feature greatly reduces error and allows novice users to access training deep
learning module with a predefined set of options.

Fig. 6. The Collaborative Training and Inference Tool (CTIT) inference on
validation set: ease of parameter setup allows for fast evaluation cycle of the
trained models on the target domain e.g. location of the validation set, model
threshold, and what model is evaluated. GPU/CPU toggling is also allowed
with the ”Don’t Use Cuda” checkbox and it provides additional flexibility for
the user in dynamic setup.

model quicker and easily located.
We have refined the tool by using it in collaborating on

this project, and have utilized the tool for the experiments
described in Section VI. Near term plan is to release it on git
hub for research purposes and gather feedback on the useful
features in collaborative model training setup.

The CTIT is to be released as open source software under

the LGPL license on Github. The CTIT will be updated with
new functionality when the new functionality completes and
passes functionality checks. The CTIT will eventually support
other deep learning models that coincide with research needs.
In other words, completing a new portion of the interface
to ease the creation custom model architectures by using
Detectron and our CTIT. Video tutorials showing the use of
the CTIT will be linked on the Github repository.

B. Asset Identification and Monitoring (AIM)
a) Asset Identification and Monitoring (AIM) Tool for

Annotation: provides analysts with an interface to (1) identify
new objects of interests in maritime video feeds, (2) initial-
ize light-weigh model training when enough samples were
labeled, and (3) apply this intermittent model to the incoming
video stream for real-time monitoring application. An analyst
spots an asset of interest in a frame, and using the AIM
annotation functionality, then localizes and annotates the asset,
as illustrated in Figure 8. Full demo of the tool is available
on YouTube [25].

b) Asset Identification and Monitoring (AIM) Tool for
Intermittent Modeling: extends this basic features to to sup-
port building intermittent models: asset models persistent to
particular sensors, time frame or location. Here we utilize the
discriminate power of raw features produced by deep neural
network system before the classification step, as demonstrated
in [16], [17], [19]. The final form of the features cannot
capture aspects that separate one member of a generic class
(e.g. car) from another. If an analyst is looking for a specific
kind of car, as illustrated in Figure 4(right), and labels it
as a grey car, we can use this new specialized labeling
to separate what characterizes grey car from all the other
cars using underlying DCNN features. In the deep neural
network inference phase, we save top region proposal network
candidates [4], [12], [15] and illustrated in Figure 4(center),
and associated high dimensional features for those regions.
When an analyst uses AIM to select the bound box, the
system automatically snaps to the closest detected region by
DNN as illustrated in YouTube video [23]. Region with the
highest IoU from analyst selected regions is selected as the
best candidate. When an analyst labels the box, either adds
missing label Figure 4(left) or adds more descriptive label
Figure 4(right), the system saves the annotation to be used
both for persistent and intermittent training. The flow when



Fig. 7. The Collaborative Training and Inference Tool (CTIT) for (left) initial training, (center) resume training, and (right) fine tuning mode of deep learning
model training process. This capability makes it easy for the analyst to make the last minute changes to their configurations e.g. number of loading workers,
image batch size, and learning rate.

dataset name including data from
COCO

including data from
IPATCH

number of im-
ages/frames

number of anno-
tations

number of
annotated boats
(IPATCH)

COCO Train 2017 Training Set - 118287 860001 10759
COCO Test 2017 Testing Set - 5000 36781 430
Control Set COCO Train 2016 PETS Low Level 121868 8863 17064(6305)
Validation Set - 2016 PETS Mid Level 7049 8151 8151(8151)

TABLE I
COCO AND IPATCH DATA USED IN THE EXPERIMENT

Fig. 8. AIM for Data Annotation: existing annotations and deep learning
results are displayed (bounding box and a label). Analyst can add new label,
and select or refine the label. The information is automatically saved to feed
into deep learning processing.

using the AIM tool for intermittent modeling is shown at
Figure 10. We are currently experimenting with single layer
neural networks and traditional machine learning algorithms to
create lightweight robust framework that generates intermittent
models. The proposed system helps an analyst to identify and
mark assets of interest and to utilize the existing persistent
model in efficient way.

V. EXPERIMENTAL SETUP

a) Baseline Consumer Dataset: We use COCO bench-
mark [8] for performance evaluation of our transfer learning

strategy [8]. COCO, Common Objects in Context dataset
consists of images with complex everyday scenes containing
common objects in their natural context. COCO dataset con-
tains 91 objects types common in consumer photography, and
total of 2.5 million labeled objects in 328k images. We use
a model trained with COCO only as a baseline analysis and
metric to report the performance of our persistent models [8].

b) Baseline Maritime Dataset: IPATCH is a maritime
dataset [26] collected in April 2015, addressing the application
of multi sensor surveillance to protect a vessel at sea from
piracy. The recordings represent a series of realistic maritime
piracy scenarios. For the close range detection of threats, the
IPATCH project added visual and thermal cameras to the VN
Partisan vessel. Specifically, Four AXIS P1427-E Network
cameras with five megapixel resolution were added; three of
them at the starboard side and one facing the stern. They
have day and night functionality, wide temperature range,
weatherproofing, progressive scan CMOS, a frame rate of
30 fps, and digital PTZ [27]. We use the [27] Low Level
Challenge Dataset as domain specific dataset added to the
training pipeline. Sample annotation is shown in image 8. Mid
and High Level Challenge Datasets from PETS Workshop [27]
are annotated and used as the Validation Set to evaluate domain
translation of persistent models. Note that all three PETS
Datasets contain scenes from different days and activities, and
we use them as robust proof of concept to demonstrate sensor
data variation in domain translation for maritime application.
Number of annotation instances and dataset characteristics are
shown in Table IV-A.



Fig. 9. Examples of images from Validation Set with ground truth annotations (yellow box) and model results (green box) visualized

Fig. 10. AIM for Intermittent Modeling: system identifies target using existing set of target models. If the new target is spotted and few
examples labeled, system triggers learning pipeline branch and applies the label to subsequent frames.

c) Deep Learning Framework: We rely on the baseline
pytorch implementation of Detectron [24]. Our DNN is created
using ResNet50 [13] architecture and for each network we
train 180,000 epochs.

d) System: Server with four NVIDIA GeForce GTX
1080 Ti GPUs is used for training and inferencing.

VI. EXPERIMENTS, RESULTS, AND FINDINGS

a) Experiment 1: Domain Translation: was to compare
a model trained using COCO2017 training dataset to a model

trained under the same condition using COCO2017 training
dataset and IPATCH Low Level Challenge Dataset, as de-
scribed in Table IV-A. The goal for this experiment was to
provide an accurate assesment that features gathered from
a large dataset of a different domain could help provide
statisfactory results when applied to a dataset in a more
obscure highly variant domain. Evaluation Metric used in this
experiment setup was defined by COCO benchmark [8]. Note
that mAP@[0.5, 0.95] means average mAP over different IoU
thresholds, from 0.5 to 0.95 with the step 0.05 e.g. (0.5, 0.55,



Fig. 11. mAP and Recall for different values of IoU and averaging over
multiple IoU for all objects, and for small medium and large objects [8] for
Detectron model trained on COCO data and trained on COCO + IPATCH
data.

0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95). mAP@.75 means
the mAP with IoU=0.75. Same applies for Recall. Numerical
comparison is charted in Figure 11 where we compare average
precision (top) and Recall (bottom) for both models for various
values of IoU. Visual examples are presented in Figure 9.
Note that model performance significantly improves across
the board when domain relevant data was introduced to the
learning pool. Even though the training set is much smaller
than COCO training set and Validation set, it still offered a
significant performance boost, specifically for small regions,
as illustrated in Average Precision and Recall figures in
Figure 11. These results show that many of the difficulties in
the ocean environment can be captured by creating a dataset
that encompasses the domain specific challenges.

Train Test for IoU 0.3 0.5 0.75
COCO Train Validation Set AP 0.518 0.382 0.19
Control Set Validation Set AP 0.936 0.936 0.764

COCO Train Validation Set Recall 0.814 0.636 0.248
Control Set Validation Set Recall 0.969 0.966 0.836

TABLE II
AVERAGE PRECISION AND RECALL VALUES FOR ”BOAT” CLASS AND

DIFFERENT MODELS FOR DIFFERENT VALUES OF IOU.

b) Experiment 2: IoU Metric Sensitivity: Maritime ob-
jects are small compared to the overall area of the image or
vieo frame, see Figure 9 for examples. Traditional consumer
IoU setup of 0.5 is too restrictive, as system marks hits as

Fig. 12. Multiple detections and scores and one ground truth frame for
maritime boat object. Lowering IoU requirement from consumer data setup
allows for better evaluation for the system.

missed in the evaluation. By relaxing the IoU threshold to
account for sparsity of objects in maritime data, and including
Experiment 1 domain data in the training, we have managed to
boost the performance of the detectron on new domain from
AP 38.2% to 93.6% and recall frm 63.6% to 96.9%. This
experiment confirms our hypothesis. All models were then re-
evaluated with the a lower bound of 0.3, reduced from 0.5.
In natural scenes, lowering IoU results in lowering detectron
precision tradeoff: more true positives and false positives pass.
This assumption does not hold true due to sparsity of data:
increase of recall was accompanied by increase in precision
for the same models, as illustrated in Table II. Figure 12
offers an insight of typical relation between ground truth and
detections in maritime IPATCh dataset.

Detection Score Threshold 0.05 0.025 0.01 0.005 0.001
mAP 0.3 0.936 0.940 0.943 0.943 0.943
mAP 0.5 0.936 0.940 0.943 0.943 0.941

mAP 0.75 0.764 0.764 0.766 0.766 0.766
mAP 0.3:0.95 0.707 0.709 0.709 0.710 0.710

mAP 0.3:0.95(small) 0.698 0.699 0.699 0.699 0.699
mAP 0.3:0.95(medium) 0.693 0.697 0.697 0.699 0.700

0.3:0.95(large) 0.783 0.783 0.783 0.783 0.784
Detection Score Threshold 0.05 0.025 0.01 0.005 0.001

Recall 0.3 0.969 0.977 0.980 0.983 0.986
Recall 0.5 0.966 0.973 0.976 0.979 0.983
Recall 0.75 0.836 0.839 0.840 0.841 0.843

Recall 0.3:0.95 0.764 0.769 0.771 0.772 0.776
Recall 0.3:0.95(small) 0.764 0.768 0.768 0.769 0.771

Recall 0.3:0.95(medium) 0.737 0.743 0.746 0.749 0.753
Recall 0.3:0.95(large) 0.838 0.839 0.839 0.840 0.841

TABLE III
SCORE THRESHOLD REDUCTION WITH INCREASE OF RECALL WITH NO

CORRESPONDING DECREASE IN MAP FOR A MODEL TRAINED ON
CONTROL SET AND EVALUATED ON VALIDATION SET.

c) Experiment 3: Model Threshold Sensitivity: The goal
of this experiment is to show that given domain specific
characteristics, that hyper-parameter tuning can greatly affect
results. Note that models are optimized for consumer imagery
and natural scenes, that are often crowded. Maritime data has



Fig. 13. Decreasing score threshold increases recall without corresponding reduction to mAP

prominent characteristics such as that objects are rare and
different than the background, and crowding rarely occurs at
sea. We use this domain characteristics to justify lowering
the threshold of the expected predictions, and evaluate its
influence on precision. The results are presented in Figure 13
and Table III. When the predictions are created by the model,
it assigns a confidence score to each, which is used to rank the
predictions. To continue in the evaluation, the detections must
have a score above a detection score threshold. In an effort
to increase recall, the control model was evaluated with lower
thresholds as seen in figure 13. This lowering of the score
increased the recall without dropping precision, and adjusting
this parameter to domain characteristics allowed recall boost
from 0.969 to 0.986, while precision gain went from 0.936 to
0.943 for IoU of 0.3.

d) Experiment 4: RPN experiment: The Region Proposal
Network(RPN) is used to create proposed detections. Non-
maximum suppression(NMS) is then applied to these propos-
als. NMS is ranking the detections by confidence score from
highest to lowest. The highest ranked is then compared to each
subsequent proposal using IoU. Any lower ranked proposal
that has an IoU over a certain threshold is suppressed for being
too similar. This reduces the number of proposals that need to
be considered. The goal of this experiment was to increase the
mAP and Recall scores by looking at mutliple RPN thresholds.
This is due to the success of lowering the scoring threshold

and acquiring satisfactory results. The RPN NMS threshold
was increased to from the default of an IoU of 0.7 to 0.75,
0.8, 0.85, 0.9, and 0.95 table IV. This increase of the RPN
NMS threshold was only applied during testing.

e) Experiment 5: CTIT Fine-tuning: The goal of this
experiment was to provide results that show the CTIT is able
to be used as an interface and assist with domain translation
and fine tuning. In this experiment, we refined baseline COCO
model by adding IPATCH Low Level Challenge Dataset to
the training pipeline. The results are in line with findings, and
adding domain data for generic model fine tuning significantly
improves model performance, as demonstrated in Table V and
Table VI.

f) Summary: We have demonstrated robust way of in-
creasing model performance when adjusted to domain charac-
teristics. The greatest discriminator is domain sensitive train-
ing data. Maritime domain lack alternative targets that would
be incorrectly associated as maritime vehicles allowed us to
relax the parameter constraints learned on urban natural scenes
in consumer photos, adjust parameters of the model inference
(IoU, RPN, and threshold), and achieve robust performance
and high precision and recall numbers for this challenging
dataset, as illustrated in Figure 14.



Fig. 14. Domain adaptation modeling sees most significant
boost in the performance

RPN NMS Threshold 0.7 0.7 0.75 0.80 0.85 0.90 0.95
mAP 0.3 0.518 0.936 0.945 0.945 0.945 0.946 0.939
mAP 0.5 0.382 0.936 0.939 0.939 0.939 0.939 0.939
mAP 0.75 0.109 0.764 0.762 0.761 0.761 0.761 0.756
mAP 0.3:0.95 0.252 0.707 0.710 0.710 0.710 0.710 0.706
mAP 0.3:0.95(small) 0.129 0.698 0.699 0.699 0.698 0.697 0.697
mAP 0.3:0.95(medium) 0.273 0.693 0.693 0.692 0.692 0.692 0.687
mAP 0.3:0.95(large) 0.484 0.783 0.785 0.784 0.787 0.787 0.786
RPN NMS Threshold 0.7 0.7 0.75 0.80 0.85 0.90 0.95
Recall 0.3 0.814 0.969 0.970 0.972 0.972 0.972 0.966
Recall 0.5 0.632 0.966 0.967 0.969 0.969 0.968 0.962
Recall 0.75 0.248 0.836 0.836 0.837 0.833 0.833 0.829
Recall 0.3:0.95 0.431 0.764 0.765 0.765 0.765 0.765 0.760
Recall 0.3:0.95(small) 0.247 0.764 0.765 0.765 0.762 0.762 0.760
Recall 0.3:0.95(medium) 0.382 0.737 0.738 0.739 0.738 0.738 0.731
Recall 0.3:0.95(large) 0.712 0.838 0.838 0.843 0.841 0.841 0.841

TABLE IV
REGION PROPOSAL NETWORK THRESHOLD VARIATION AND PERFORMANCE CHANGE FOR A MODEL TRAINED ON CONTROL SET AND EVALUATED ON

VALIDATION SET.

IoU 0.3 0.5 0.75 0.3:0.95 0.5:0.95 0.3:0.95 0.5:0.95 0.3:0.95 0.5:0.95 0.3:0.95 0.5:0.95
Model / Area all all all all all small small medium medium large large
COCO Train 0.518 0.382 0.109 0.252 0.159 0.129 0.007 0.273 0.163 0.484 0.361
Control 0.936 0.936 0.764 0.707 0.616 0.698 0.595 0.693 0.595 0.783 0.707
COCO Train,
finetuned with
IPATCH

0.945 0.945 0.792 0.723 - 0.691 - 0.707 - 0.810 -

TABLE V
mAP SCORES, AS DEFINED BY COCO BENCHMARK [8], FOR DOMAIN MODELS

IoU 0.3 0.5 0.75 0.3:0.95 0.5:0.95 0.3:0.95 0.5:0.95 0.3:0.95 0.5:0.95 0.3:0.95 0.5:0.95
Model / Area all all all all all small small medium medium large large
COCO Train 0.814 0.632 0.248 0.431 0.295 0.247 0.058 0.382 0.248 0.712 0.610
Control 0.969 0.966 0.836 0.764 0.682 0.764 0.674 0.737 0.651 0.838 0.774
COCO Train,
finetuned with
IPATCH

0.973 0.973 0.857 0.774 - 0.767 - 0.749 - 0.849 -

TABLE VI
Recall SCORES FOR VALIDATION SET, AS DEFINED BY COCO BENCHMARK [8], FOR DOMAIN MODELS



VII. CONCLUSION

We propose a new approach for transfer learning and persis-
tent model reuse for domain adaptation of Deep Convolutional
Neural Networks. Varying resolution quality of operational
data, size of objects of interest, view occlusions, and large
variation in sensors due to sheer nature of overhead systems
as compared to consumer devices contribute to degradation
of the classification and recognition when applied to over-
head sensor data. In this paper, we propose a clear path
towards object recognition solution for overhead sensor feeds,
and demonstrate its usability for collaborative maritime asset
identification. First, we exploit the domain characteristics
to refine the deep learning framework, and show that our
transfer learning strategy produces models that reliably and
accurately discriminate sea objects from overhead imagery
data comparable to consumer data benchmarks. Next, we
introduce the notion of persistent and intermittent modeling
strategies in collaborative environments, and propose as well
as implement two collaborative tools to aid the object recog-
nition: one that support persistent modeling, and the other that
supports labeling and intermittent modeling. We propose a
data science approach to bring deep learning application in
maritime domain to the same level as for consumer data, as
our persistent models achieve over 94.5% precision and 97.5%
recall rate for generic boat classification in IPATCH data [1].
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