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Abstract—On-board video sensors on large ships capture video
data at high rates and provide real-time object tracking for
maritime applications such as piracy and illegal fishing. High
volumes of collected video and imagery data require advanced
technology to analyze the video feeds, reduce data smog, and
alert the crew on ships or coastal guard when unusual activities
are detected. We present an integrated end-to-end system that
analyzes multi-camera ship video feed; localizes maritime vessels
in the video feed; identifies the maritime vessel over multiple cam-
eras; maps the vessel track onto an overhead plane; and identifies
anomalous vessel movement around the ship. In this paper, we
focus on a specific activity detection approach in maritime vessel
overhead tracks and on synthetic data generation to realistically
model maritime boat movements around onboard ship cameras
using real-world examples. We propose and compare three novel
modes of trajectory analysis and activity classification, using
Computing with Words (CWW), a Markov trajectory feature
classifier (MTFC), and Naı̈ve Bayes Radial Classifier (NBRC) to
detect the activity of vessel approaching the ship, vessel chasing
another vessel, and vessel circling around the ship.

Index Terms—maritime, activity, large video feeds, multiple
cameras, classification

I. INTRODUCTION

Overhead imagery analytics are gaining importance in inte-
grated maritime surveillance due to an increase in naval traffic,
a decrease in crews on the decks of large ships, and an increase
of maritime piracy and illegal fishing. The relevant authorities
survey the assigned territories to ensure large ship safety,
prevent piracy, prevent ships from carrying illegal firearms and
smuggling, and prevent illegal, unregulated, and unreported
fishing. Piracy is one of the most prominent threats faced by
the global shipping industry today. It is estimated that maritime
piracy attacks have cost the industry billions of dollars, and
these attacks pose significant danger to the crew members
aboard. As technology progresses, the use of visual data feeds
provides an increasingly viable method of identifying potential
threats along with the other onboard sensors.

In general, maritime domain surveillance is carried out using
a combination of Automatic Identification Systems (AIS),
Coastal Radar Systems (CRS), and Long Range Cameras
(LRC) [1]. These systems produce petabytes of video feeds,
which cannot be feasibly analyzed in real time. The recent
rise of maritime piracy and attacks on transportation ships has
cost the global economy several billion dollars. To counter

the threat, researchers have proposed agent-driven modeling
to capture the dynamics of the maritime transportation system
and to score the potential of a range of piracy countermeasures.
In the past couple of years, several analytic systems have been
proposed to provide and analyze ship path planning, identify
suspicious ships, track ships, and approach and attack target
ships using video sensor feeds The work has shown promising
results as it focuses on heterogeneous information source
fusion and uses out-of-box machine learning approaches de-
signed for commercial rather than maritime applications [1],
[2]. These systems can greatly benefit from real-time warnings.
Visual data feeds from on-board ship cameras are used by
the crew only after they have been alerted of a possible
attack. Modern surveillance systems can greatly benefit from
automated warnings (e.g., ”boat is approaching”, ”boat is
circling the ship”) before the crew even spots the boat.

A. Related Work

Autonomous ships are expected to improve the level of
safety and efficiency in future maritime navigation, as the
autonomous situational awareness task is moved to ships.
State-of-the-art surveys consider the data integration of Global
Navigation Satellite System (GNSS) receivers and inertial
measurement units (IMU), visual and audio sensor data feeds,
remote-sensing (RADAR and LiDAR) data, and auxiliary
data (Automatic Identification System (AIS) and external data
archives) [3]. Octavian et al. proposed an intelligent system
that provides and analyzes ship path planning, identifies and
track ships. Artificial intelligence-based surveillance systems
are integrated in a single Intelligence Coastal Surveillance
system for monitoring and analysis, tracking, and enforcement
[1]. Bloisi et al [2] proposed a modular system for intelligent
maritime surveillance, with a focus on fusing the informa-
tion from heterogeneous sources. The Vessel Traffic Service
System mainly relies on video feeds, and vessel tracking is
enhanced when camera video data is used in combination
with radar data and the Automatic Identification System (AIS)
[2]. L. Patino et al. demonstrated that the onboard sensor
information, combined with intelligence from external sources,
proved valuable for early piracy threat detection [4]. The team
developed a detailed playbook for the anomalous activities
of maritime vessels surrounding the ship that we use as



Fig. 1: Sample real-world trajectory detected from multiple camera
feeds in IPATCH data [4].

a basis in this paper [5]. The 2020 survey [3] overviews
suitable sensors and relevant AI techniques for an operational
sensor system. The perception tasks are related to well-defined
problems, such as situational abnormality detection, vessel
classification, and localization; these problems are solvable
using AI techniques, and machine learning methods such
as deep learning and Gaussian processes are identified as
especially relevant for these problems without a deep dive into
actual data smog reduction performances [3]. The 2021 Survey
of maritime vessel re-identification, tracking, and multi-model
data fusion with data from visual sensors provides the first
comprehensive review of research into the use of deep learning
in situational awareness of the ocean surface, and it provides a
better overview of state-of-the-art methods in maritime vessel
research [6].

B. Paper Overview

In this paper, we outline the considerations on design of an
end-to-end system to generate automated warnings, and focus
on the best machine learning approach adapted to maritime
activity and trained to capture boat activities. Section II out-
lines the video to maritime vessel track procedure, Section III
describes three activity recognition approaches, Section IV
describes the synthetic data generation; Section V presents
the experiments and the measurable results, and Section VI
concludes the work and outlines the next steps.

II. END-TO-END ACTIVITY IDENTIFICATION PIPELINE
FROM MULTIPLE SHIP CAMERAS

Camera sensors are inexpensive but the automatic extraction
of information from multiple video data streams requires
expensive human engagement. First, we design and train
algorithms to localize, identify, and track small maritime
objects under varying conditions (e.g., a snowstorm, high
glare, night) [7], [8]. Next, we produce a model that can use
multiple video feeds to map detected objects from an overhead

view and classify its path type in a way that can be used to
preemptively identify anomalous behavior [9]. We merge the
overhead projection from multiple cameras as we know the
position of the cameras e.g. as specified in IPATCH [5] data
in Figure 2. Each individual scene is composed of at most four
distinct cameras: camera twelve faces the stem of the boat with
cameras ten, eleven, and fourteen facing starboard and slightly
towards the bow. We merge the identified maritime vessels by
matching the overlapping detection region of the cameras as in
Figure 2, and produce a unique multi-camera track in Figure 1.

Fig. 2: Connecting tracks over multiple cameras based on location

When analyzing real-world data, we need to consider that
any activity we want to detect will probably not occur imme-
diately when the boat is first observed. Moreover, the activity
could take place over a large variety of time domains. For
example, a potential threat may circle around the ship over
the course of hours, subtly change position, and suddenly
approach to commence an attack in a matter of minutes or
seconds. Therefore, it will be necessary to normalize the path
length to make an accurate classification. This can be done by
iterating backwards over the previous points and calculating
the distance between them until we reach a path length
threshold.We would further smooth the path this path section
into a constant number of points using means clustering which
would make it less noisy and easier for a model to use. Figure
1 shows the result of this done in practice using videos from
the IPATCH dataset [4]. The expected boat paths are circling,
chasing another boat, approaching, and random, as derived
from the real dataset [5]. Figure 2 is an example of an overhead
model of a ship that shows the camera positions from Scene 2,
Take 3 in the IPATCH data set [4], and an example of how to
map the boat’s multi-camera defections to the overhead view
[9] by using perspective transformation to map the object’s
center pixel (x,y) coordinate to the overhead model. If the
detected object is seen in multiple overlapping video feeds, we
may see a slight difference in the calculated location, in which
case we define its position as the average (x,y) coordinate on



the overhead model. The result is a set of tracks corresponding
to a maritime vessel in the vicinity of the ship.

III. ACTIVITY MODELING APPROACHES

Our work builds on previous work that used Markov tra-
jectory feature classifier (MTFC) [10] and the Computing
With Words approach [11], and proposes novel Naı̈ve Bayes
Radial Classifier (NBRC) for maritime vessel track activity
recognition.

A. Computing with Words

Fig. 3: Computing with Words Regions w.r.t. ship in the center.

Computing With Words (CWW) approach is fast and does
not require training data, and its accuracy varies largely based
on the trajectory parameters [11]. We implemented Computing
with Words (CWW) model [11] as a baseline. This method
assigns alphabetical characters to regions that are enclosed
around the asset ship in an overhead model. Each of these
regions is broken into 4 quadrants that are separated halfway
along each axis and represented by a number 0 − 3, as
illustrated in Figure 3. Computing with Words modeling steps
are as follows: (1) within each region, each quadrant is
represented by 2 tuples that contain the top left corner pixel
location, the bottom right corner pixel location, the quadrant
number, and the region character of a rectangular box within
the overhead domain. The 2 boxes have an overlapping corner
and form an ’L’ shape that is one quadrant of a region. The
overlap in the quadrant is not an issue since they both represent
the same quadrant and region. A total of 8 boxes form a
region, and we can vary the thickness and the number of
the regions, as illustrated in Figure 3. Each time a region
is generated, the tuple objects that define the quadrants are
added to a list. When the next region is generated, padding
based on the region thickness is added to the corners so that
the next region generated is closer the asset ship. To determine
in which quadrant a given point belongs, we iterate through

the list of tuple objects and find the one where the x value of
the pixel location of the point is between the x values for the
2 corners and do the same with the y values. When evaluating
a trajectory, we find the location of each point in the model
and build a decodable string representing how the trajectory
passes through the regions and quadrants. On each new point,
we first append the region character only if it changes, and
then the quadrant number if it or the region changes. When
iterating over the string for a given path, we know the current
region was the last alphabetical character encountered, and the
current quadrant is the last numerical character encountered.
Each activity type meets specific conditions. If the path passes
through most of the regions while remaining in one quadrant,
it indicates chasing if that quadrant is 1 or 2; if the quadrant
is 3 or 4, it indicates approaching. If the path passes through
more quadrants than regions, it is circling. If the path passes
through at least 2 regions and quadrants, then it is a random
path. It is possible for none of these conditions to be met, in
which case the track remains as default where no classification
is made.

B. Markov Trajectory Feature Classification

Here, we expand on the idea presented in [10], and propose
a Markov trajectory feature classifier (MTFC). First, each
individual point is given a feature vector rather than the
trajectory as a whole. The 4 features we used to describe
each point in each trajectory are distance, velocity, angle, and
angular velocity. Distance is the radius from the center of the
image to the point in the path. Velocity is the distance (in
pixels of the overhead image) that the point has traveled in the
last time step. The angle is the direction in which the point
moved from the last point in the last time step with respect to
the direction of the asset ship’s bearing. Angular velocity is
the change in the angle from the last point over time since the
last detection; for our synthetic data, the angular velocity is 1.
We propose the transition of the features for a trajectory from
point to point be a Markov process. With our training data, we
build a transition matrix for each of our training samples that
best describes how the features transition. For classification,
any new trajectory is compared it to each of our models
and find the likelihood of those feature transitions occurring
given the model’s transition matrix. We categorize the new
trajectory based on which model had the highest likelihood of
those feature transitions occurring. We found that the MTFC
approach is less sensitive to variations in the parameters of
the trajectory (i.e., sample frequency and number of points
in the path), but it has a slow inference time which makes it
impractical for use in real time.

C. Naive Bayesian Radial Classification

We propose to convert the pixel grid coordinates of each
point of the detected boat into polar coordinates with the asset
ship at the origin as a distance from the boat (radius) and its
angle relative to the bearing of the ship (θ) from Figure!1.
This approach to modeling indicates more information that
is useful to us since these values are relative to the ship’s



Fig. 4: Naive Bayesian Radial Classification (NBRC) feature distribution per different activity label.

position. θ is calculated by taking the inverse cosine of the
dot product between the normalized vectors representing the
ship’s bearing and the direction to the tracked ship. This means
θ will be between 0 and π as the absolute angle, as opposed
to representing the point in standard polar coordinates with
θ ranging from 0 to 2π. As we are not concerned on which
side of the ship the activity is taking place, and symmetric
tracks about the ship’s bearing should be classified the same.
The tracks modeled this way are robust within and different
for different classification types. An approaching or chasing
path will not have much variation to θ over the course of
its path, as it approaching the ship at the same angle. The
radius for the approaching activity will change quickly as it
moves in. On the other hand, a circling trajectory will have
a lot of variation in θ as it moves around the ship; however,
the radius should not vary much. We propose to represent
each trajectory as a feature vector of length 4 that contains
the angular mean, angular variance, radial mean, and radial
variance, as illustrated in Figure 4. The mean tell us roughly
where on the overhead view the activity is taking place. This
is especially important when differentiating between a track
that is chasing, which is when the boat closing in from the
rear, and a track that is approaching, which is closing in from
any other direction. The variances tell us how much the track
changes in direction and distance.

Fig. 5: Sample synthetic trajectories representing approach, chase,
random, circling

IV. DATA SYNTHESIS FROM REAL DATA EXAMPLES

The IPATCH activity scenarios [5] provided us a blueprint
on what defines a specific maritime vessel activity w.r.t.
autonouis ship: appraching, circling, chasing another vessel,
and random [5]. set which provides a set of videos from



different angles facing outward from cargo ships; these videos
show simulated scenarios of small boats performing various
maneuvers. Unfortunately, this data set does not contain
enough footage to train any kind of model that can classify
boat paths in the way we want. For this reason, we chose to
create a synthetic data set of labeled trajectories to train and
test our models.

Fig. 6: Synthetic generated trajectories with no noise variation

Each trajectory in our synthetic data set is generated by one
pixel move at a time. Our method of generating trajectories
requires 3 parameters: the number of points, a sample fre-
quency, and a probability distribution. When detecting tracks
in the real world, the sample frequency will be the time
between when each detected object is recorded and mapped
to the overhead, but for our synthetic data, it is the number of
pixel moves between each point. The probability distribution
is given as a vector of length 9 whose values sum to 100. From
a given point, there are 9 possible directions for movement:
remaining in the current location or moving to any of the 8
surrounding pixels. To generate a trajectory, we determine a
starting location and sort the possible directions we can go
based on how well they will fit the trajectory we are trying
to generate. Then we randomly select the direction to go
based on the probability distribution provided. Therefore, the
probability distribution should have higher values first that
decrease so that our trajectory stochastically moves in the
selected direction. This process is repeated with each move,
and points are recorded based on the sample frequency until
we have the desired number of points.

Approaching and chasing are the simplest trajectories to
generate, as they are the paths that move towards the boat
with some random noise as not to be perfectly straight lines,
and they have a starting point somewhere on the edge of
the overhead model domain. Approaching and chasing are
only different in that chasing will come from behind, as we
assume the boat is moving when the detection is made, while
approaching can come from any other side.

Fig. 7: Synthetic generated trajectories with high noise variations

Sample Frequency 35
Points 50

PD Training and Testing 20, 15, 15, 10, 10, 10, 10, 10, 0

PD Too Much Noise 20, 10, 10, 10, 10, 10, 10, 10, 10

PD No Noise 100, 0, 0, 0, 0, 0, 0, 0, 0

TABLE I: parameters for synthetic data sets

The random trajectory type is made in a similar way: we
choose 2 random points on the overhead domain between
which the path will move with the condition that the center,
where the asset ship is located, is at least 150 pixels from the
line between the 2 points so the path does not appear to be
chasing or approaching. The circling trajectory type is slightly
more complex to generate. It is a path that starts at a random
location in the overhead domain that is at least 150 pixels
away from the center and moves around the asset in a circular
fashion. This will only end up being a partial circle, as it is
unlikely that a ship will completely circle another ship in the
real world. The most appropriate parameters for generating
data were found through trial and error. We can see a real
trajectory from the IPATCH data set in figure 1,as well as
samples from the parameters we used to train our models,
Figure 5 examples of trajectories with no noise Figure 6, and
trajectories with too much noise Figure 7. The parameters for
these synthetic paths can be found in Table I.

V. EXPERIMENTS

The performance of the propose 3 models on synthetic
dataset is illustrated in the form of the confusion matrices
in Figure 8. Each row indicates the true label of a predicted
sample, and the columns represent the number of times the
model predicted that class. The results presented for our
NBRC and MTFC approaches used a training set of 500
samples of each type for training and another set of 500
samples of each type for testing. Our Computing with Words
approach does not need training data, so these results are using
the same testing data as other two approaches. Note that the



Fig. 8: (left) confusion Matrix for CWW, accuracy of the approach is 0.44; (center) confusion matrix for MTFC is 0.74; (right) confusion
matrix for the NBRC is 0.91. Comparable accuracies are illustrated in Figure 9.

rows of the confusion matrix for this approach do not sum
into the 500 samples used. With this model, a trajectory may
not meet the conditions for any classification and remains
as default. Although the correct identification of chase and
approach trajectories may not be proficient, this model mostly
struggles with identifying random and circling trajectories.
Since circling trajectories are only partial circles, as we would
not expect a boat to perform a full or large portion of a circle
around the asset ship, it is not too often that it meets the
condition of staying within the same region and hitting 3 of
the quadrants. Moreover, if this model predicts circling, it is
more likely that it is a random path than circling.

A. CWW: Computing With Words

The Computing with Words method was the most basic
model we tested, and the results we got from this method are
in the confusion matrix in Figure 8(left). Its overall accuracy
is 0.4, which is better than the expected 0.25 if predictions
were completely random. However, this accuracy is clearly
insufficient and only serves as a base line. One of the main
disadvantages of this method is that the sections for this model
can be very large, especially when moving between quadrants
in the same region. This means a large amount of movement
may be needed for a new part of the string to be created.
One workaround is to add more quadrants within each region
since the region thickness can already be varied, but this
would require new criteria for classification, and it will be
ship dependant. We also find that the accuracy for CWW varies
greatly with different parameters for our synthetic trajectories.
In fact, some experiments with nosier trajectories yield worse
than random guesses with the same classification criteria that
provided decent results in our standard trajectories.

B. MTFC: Markov trajectory Feature Classifier

The results for the Markov trajectory feature classification in
Figure 8(center) shows a better performance than CWW. The
accuracy measure was 0.739, which is better than Computing
with Words, but there is room for improvement. Although
the results for this approach are better than the Computing
with Words (CWW) approach, there is still a high level of

inaccuracy, especially when considering the probability of the
model being correct when predicting random trajectories. We
speculate that this is due to the nature of the Markov process
which involves making decisions based on how the features
change from point to point rather than the values of the
features themselves. There is information on the angle and
distance of points in the paths relative to the asset, which
are the differentiating factors between random trajectories and
chase or approach trajectories; however, the way those features
change from point to point seem to be very similar, causing the
model to struggle. One problem that is not visible in the raw
data is the inefficiency of this method causing it to be very time
consuming. While it took seconds to run 2000 samples with
the other 2 models, this method took 3.6 hours. The reason
for this is the score function of hidden Markov models takes
a long time to compute, and each of the 2000 test trajectories
evaluated were scored against 2000 training models, each one
taking about 6 seconds to compute. This makes this method
infeasible for use in real time against real-world data. Ideally
we would have a single model that defines how the features
for any given trajectory class transition from point to point.

C. NBRC: Naı̈ve Bayes Radial Classifier

Naı̈ve Bayes Radial Classifier (NBRC) performance on the
same dataset is captured in Figure 8(right). Each radial feature
in Figure 4 roughly follows a Gaussian distribution. Once we
learn the mean and standard deviation for each feature of each
class, we can use that information to decide to which class a
new trajectory belongs by finding which class has the highest
likelihood given its feature values. In our implementation, we
used the Scikit-learn Gaussian Naı̈ve Bayes classifier trained
on our synthetic data. Our Naı̈ve Bayes Radial Classifier
showed far more promising results than either of our baseline
approaches with a total accuracy of 0.91, see Figure 9. There
is a degree of similarity between this method and Computing
with Words (CWW). A trajectory passing through multiple
quadrants corresponds to a high angular variance and passing
through multiple regions corresponds with a high radial vari-
ance. In terms of quantifying these metrics of the trajectory, it
is much more efficient to numerically calculate these variances



for a given trajectory and apply Bayes’ theorem to find the
conditional probability that it belongs to each class given those
values for other samples. One notable disadvantage of this
method is the lack of temporal information used. This would
be an issue if we want to differentiate between paths moving
towards and away from the asset ship. Moreover, limitation
of path types that can be classified since all types must be
separable by the angular mean, radial mean, and variance.
However, complex paths do not appear frequently and in the
context of threat detection; therefore, the recognition of such
paths may be unnecessary, and the classification of more basic
path types is more useful.

Fig. 9: three model comparison in terms of accuracy on the same
synthetic dataset: Naı̈ve Bayes classifier on Radial features exhibits
dominant performance.

VI. CONCLUSION

This paper describes our work on activity classification of
small maritime objects on an overhead-view from multiple
visual feeds. Our NBRC approach, which involves using a
Gaussian Naı̈ve Bayes classifier over the radial and angular
variance and means of trajectories showed far better results
than our 2 baseline approaches which we compared against as
illustrated in Figure 9. NBRC approach achieves 91% accuracy
on test data. We conculde that the use of radial features from
overhead multi-camera projects leadfas to most reliable results
in maritime vessel classification. Future research focuses on
contextual threat analysis that is building on activity recogni-
tion for autonomous ship camera systems.
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