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ABSTRACT

Varying resolution quality of operational data, size of targets, view occlusions, and large variation in sensors
due to nature of overhead systems as compared to consumer devices contribute to degradation of the maritime
vessel identification. We exploit the maritime domain characteristics to optimize and refine the deep learning
Mask-RCNN framework for training generic maritime vessel classes. Maritime domain, compared to consumer
domain, lack alternative targets that would be incorrectly associated as maritime vehicles: this allows us to relax
the parameter constraints learned on urban natural scenes in consumer photos, adjust parameters of the model
inference, and achieve robust performance and high AP measure for transfer learning scenarios. In this paper,
we build upon this robust localization work, and extend our transfer learning work to new domains and datasets.
We propose new approach for identifying specific category of maritime vessels and build a refined multi-label
classifier that is based on deep Mask-RCNN features. The classifier is designed to be robust to domain transfer
(e.g. different overhead maritime video feed), and to the noise in the data annotation (e.g. vessel is not correctly
marked or label is ambiguous). We demonstrate superior category classification results of this low shot learning
approach on publicly available MarDCT dataset.
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1. INTRODUCTION AND RELATED WORK

In the past few years, systems for classifying and segmenting objects in images and videos established an expected
performance baseline in consumer domain. Deep Convolutional Neural Network based systems perform various
computer vision tasks such as image classification, object detection, semantic-segmentation, human body joint
localization, and face recognition on consumer curated examples with super accuracy.1–6 Complex Machine
Learning algorithms, such as Deep Neural Networks (DNN), require a significant number of labeled training
samples to perform well due to the large number of network parameters that need to be trained. Pascal VOC,7

ImageNet,8and COCO9 benchmarks motivated the breakthroughs in the field as training samples were collected
through well executed and expensive crowd sourcing endeavor to label millions of object instances in imagery
created by consumers using their hand-held devices.

To achieve similar performance in other domains, one has to consider the replication of similar process at
comparable scale, and that is prohibitive in the domains of news, agriculture, archived cultural data, climate
science, medical science, astronomy, space, underwater exploration, aerial imagery, satellite imagery, underwater
imagery, and drone-captured imagery - there simply exist no crowd sourcing effort or labeling uniformity to
achieve comparable benchmark at such a large scale. Transfer learning research problem focuses on storing
knowledge gained while solving one problem and applying it to a different but related problem, and it has gained
traction in use for domain adaption problem in computer vision. In domain adaption problem, we focus on
utilizing multiple existing source data to build a model that will perform well on different but related dataset.
For tasks where a sufficient number of training samples is not available, a DCNN trained on a large dataset for
a different task is tuned to the current task by making necessary modifications to the network and retraining it
with the available data.10–13 Lately, multiple groups proposed an one shot learning approach for deep learning
setup, and showed it to be consistent with normal methods for training deep networks on large data.10,14 Domain
adaptation of DNN systems has been used to produce segmentation maps and to improve category identification
when applied to satellite imagery and remote sensing.15–17
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Figure 1. State-of-the-art in Deep Convolutional Neural Networks (DCNN) is consumer data. Sail 2015 Amsterdam video
on YouTube18 exhibits slight change in operating conditions (overhead camera, small objects as in this YouTube video).
(Left) This change causes the system to identify small boats as birds. (Right) Training with other available maritime
data improves classification precision, not recall.

In this paper we focus on object detection and recognition at multiple levels of description in maritime
overhead imagery. In our previous work we have demonstrated the successful single source domain adaptation
from consumer and maritime data sources to maritime object recognition.19 In this paper, we focus on three
different tasks: (a) multi-source domain adaptation of baseline models; (b) identification of maritime vessels
when there is no maturity of annotated corpus, and (c) analysis of semantically relevant objects with large
support from visual ontology standpoint in maritime domain.20

2. MULTI-SOURCE DOMAIN ADAPTATION

Low resolution quality of operational data, size of objects of interest, view occlusions, and crowded scenes degrade
the performance of state-of-the-art DCNN when applied to overhead sensor and shipboard data. For Maritime
datasets, the best algorithms struggle with objects that are small (distant objects) or with the distorted view
(sun glare), which are common problems in ocean environments. Humans have no issues in recognizing objects
in videos with similar conditions, but state-of-the-art machine learning algorithms break when there is a slight
change in the operational environment. Figure 1 illustrates how the state-of-the-art DCNN model4 produces
different labels and candidate objects based on the training dataset. Deep neural networks trained on large
corpora of labeled consumer images provide a robust generalized modeling start, and initializing a network with
transferred features from almost any number of layers produces a boost to generalization.21 In our work, we rely
on this finding and expand from a consumer dataset to maritime domain, and adapting the deep neural networks
system and parameters to reflect the target domain.

Intersection over Union (IoU) is an evaluation measure for the accuracy of object localization in an
image, see PASCAL VOC,7 ImageNet,8 and COCO9 benchmarks. IoU takes the set A of proposed object
pixels within the proposed bounding box by the detector and the set of true object pixels B and calculates:
IoU(A,B) = A ∩ B ÷ A ∪ B. In consumer benchmarks the detector performance is a hit if IoU of proposed
detection A and ground truth B is larger than a threshold, otherwise it was a fail. In our previous work, we
evaluate the performance of detectors using different measures of IoU, and evaluate performance sensitivity for
maritime domain.19 Our finding was that the change of IoU does take into consideration the influence the
measure has on the small objects, and our recommended setup is to lower IoU for maritime overhead datasets.
In this paper we adopt IoU threshold to be 0.5 for all experiments.

Model Refinement in Dynamic Scenarios allows user to fine tune models based on the domain re-
quirement. As illustrated in Figure 2, data distribution can very from application to application, and maritime
domain annotations are sparse. Our goal is to save and re-use any existing labeling in consistent manner. We
reuse existing Deep Neural Network systems and fine-tune them to new datasets and new labels. Please see the
extended discussion and mitigation of adversarial data influence in Section 3.
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Figure 2. (Left) Examples of the multi source maritime dataset: angle, glare, and object size vary in overhead imagery;
(Right) AIM VIA extension to support adding multiple labels to the same region.22

3. TRAINING DATA

Figure 3. VIA tool adaptation for asset identification and monitoring: (Left) image shows automatic annotations (either
ground truth or model inference). The system has missed several instances of boat. (Right) Analyst adds new annotations
draws missing bounding boxes.22

A Deep Neural Network framework is inherently static, and training is mostly done in one location offline and
the model is utilized for mass consummation e.g. image-to-text, identify consumer object in cell phone images
or recognize a face. High confidence of the trained model is ensured by (a) a high number of training data and
context filtering, and (b) lack of adversarial examples. In this section, we address both of these requirements in
the context of maritime applications. Typical reconnaissance mission using maritime overhead imagery includes
multiple EO sensor feeds, and a group of analysts that are reviewing these feeds from different location and
perspective. Deep Convolutional Neural Networks for surveillance and monitoring needs to be utilized in a more
dynamic environment: the sensor feeds have greater variance than consumer images. There is less labeled data
available and the application of machine learning models for asset localization and identification varies due to the
different objectives e.g. localizing, identifying, monitoring assets, or generating alerts. Deep Neural Networks
are vulnerable to adversarial attacks in the form of subtle perturbations to inputs that lead a model to predict
incorrect outputs. For images, such perturbations are often too small to be perceptible, yet they completely
fool the deep learning models.23 While the perceived scenario is free of purposeful adversarial annotations, the
simple human error can have the same effect on the system, and it is more emphasized in the refinement scenario
when the number of examples is small and one bad annotation in the small finite set can cause the error surface
to have a strongly sub-optimal local minimum.24

We have adapted VIA VGG Image Annotation Tool25 for analyst to foster this collaboration and persistent
target labeling and intermittent modeling for real-time asset monitoring, and re-use existing annotations. Asset
Identification and Monitoring for VIA provides analysts with an interface to (1) identify new objects of interests
in maritime video feeds, (2) correct existing annotations, either from previous analyst or result of model inference,
and (3) add additional labels for multiple levels of description. An analyst spots an asset of interest in a frame
that has not been labeled by the DNN system, and using the AIM annotation functionality, then localizes and
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Figure 4. VIA tool adaptation for asset identification and monitoring: Analyst can add new annotation and draw a new
bounding box (left). The annotation will automatically label the region that has the with highest IoU score with that
bounding box (center). Analyst can choose to refine the label or make it more specific (right).22

annotates the asset, as illustrated in Figure 3. This functionality helps us extend the training set for DNN system
with all objects whose representation is missing from the training data, and also add new levels of description e.g.
boat, target boat. The AIM extended VIA system allows the analyst to add missing annotations, see Figure 3,
or refines annotated bounding boxes, see Figure 4. This interactive functionality ensures that the target objects
are labeled and marked correctly, and minimizes the effect of edversarial examples on the training and model
refining process. Full demo of the tool is available on YouTube .22 The sample dataset and sample annotations
in VIA Annotator example are from DARPA NEOVISION dataset .26

4. DEEP NEURAL NETWORK REFINEMENT FOR DOMAIN ADAPTATION

Figure 5. (Top) Deep Neural Network Refinement using small domain specific labels; (Bottom) Cascading classifier learns
sub-class models from deep features for regions that have high generic class score.

We utilize the discriminate power of raw features produced by deep neural network system before the classi-
fication step, as demonstrated in.11,12,27 The final form of the features cannot capture aspects that separate one
member of a generic class (e.g. car) from another. If an analyst is looking for a specific kind of boat, as illustrated
in Figure 4, and labels it as a tugboat, we can use this new specialized labeling to separate what characterizes
grey car from all the other cars using underlying DCNN features. In the deep neural network inference phase,
We propose two different ways to train the model at multiple level of description:
Deep Neural Network Refinement: we remove the sofmax layer of domain-adapted DNN with refined labels,
and train the new network on mission specific labels, as illustrated in Figure 5(top)
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Cascading classifier: we save top region proposal network candidates4,28,29 and associated high dimensional
features for those regions and their generic labels, and we train the multi-classification system to refine the
generic label (e.g. boat) while using only deep features for regions that were recognized as boat, as illustrated
in Figure 5(bottom).

5. EXPERIMENTS, RESULTS, AND FINDINGS

Collection COCO IPATCH MarDCT
Dataset Train Test Train Test Train Test
No. frames 118287 5000 3581 7049 2696 846
No. boats 10759 430 6305 8151 3341 846

Table 1. Overview of the publicly available datasets: COCO,9 IPATCH,30 and MarDCT31 data collections.

Datasets use are publicly available consumer and maritime datasets. Number of annotation instances and
dataset characteristics are shown in Table 5. Note that IPATCH and MarDCT datasets provided frame or
scene-based annotation only. For IPATCH dataset, we utilized annotations from,19 and for MarDCT we have
used our robust boat detector and extended VIA annotator to translate frame-level annotations to object-level
annotations, see22 for examplar pipeline.

COCO benchmark dataset is used as a benchmark for performance evaluation of our transfer learning strat-
egy. COCO, Common Objects in Context dataset consists of images with complex everyday scenes containing
common objects in their natural context. COCO dataset contains 91 objects types common in consumer pho-
tography, and total of 2.5 million labeled objects in 328k images. We utilize extensive boat annotation in COCO
train to imrpove our generic model performance.9

IPATCH dataset is our benchmark maritime dataset, and it consists of data collected from multiple sensor
surveillance to protect a vessel at sea from piracy. The recordings represent a series of realistic maritime piracy
scenarios. In this experiment, we use Low Level Challenge Dataset as IPATCH train, and Mid Level PETS
Dataset as out validation set.32 We utilize IPATCH as part of our multi-source domain adaptation setup.

MarDCT, Maritime Detection, Classification, and Tracking (MarDCT) dataset consists of images coming
from multiple sources and from different scenarios. MarDCT classification dataset contains images from 24
different categories of boats navigating in the City of Venice (Italy). We utilize its finer level of annotation
to test our system of identifying objects at multiple level of description.31 The labels, coverage, and how we
grouped them for the analysis are shown in Table 3, where exemplars of each of the categories are in Figure 7.

Deep Learning Framework We rely on the baseline pytorch 1.0 implementation of MaskRCNN.33 Our
DNN is created using ResNet502 architecture and for each network we train 180,000 epochs. System Server
with four NVIDIA GeForce GTX 1080 Ti GPUs is used for training and inferencing.

Performance Evaluation is standardized COCO benchmark evaluation metric9 where True Positive TP (c)
for class c as a proposal was made for class c with probability higher than the threshold, and there actually was
an object of class c, and the IOU is larger than set threshold. False Positive FP (c) for class c is computed when
a proposal was made for class c, but there is no ground truth object of class c. False Negative FN(c) for class c
is when a proposal was made for class c, but it is lower than the threshold; or IoU with the ground truth object
for class c is lower than than IoU threshold. The average precision (AP) for set IoU is number of true positives
over sum of true positives and true negatives, and the recall for the same IoU is number of true positives over
sum of true positives and false negatives. Average Precision (Average Recall) is averaging precision (recall) over
all classes for specific IoU over a range of IoU thresholds:

AP (c) =
|TP (c)|

(|TP (c)|+ |FP (c)|
;Recall(c) =

|TP (c)|
(|TP (c)|+ |FN(c)|

;mAP =
1

|classes|
Σclasses

|TP (c)|
|TP (c)|+ |FP (c)|
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Figure 6. IPATCH Visual evaluation: domain adapted model performs significantly better for small boats and various
environments.

Experiment 1: Domain Translation compares the influence of training dataset selection to a model per-
formance. It is an accurate assessment of how features gathered from a large dataset of a different domain
could help when applied to a dataset in a more obscure highly variant domain. Performance results are show in
Table 2, and few visual exemplars of IPATCH data performance are in Figure 6. Note that model performance
significantly improves for IPATCH when domain relevant data is used in training. Even though the training
set is much smaller than COCO training set and Validation set, it still offered a significant performance boost.
These results show that many of the difficulties in the ocean environment can be captured by creating a dataset
that encompasses the domain specific challenges. MarDCT data paints a different picture: all boat objects are
centered and relatively large compared to the frame size, and MarDCT data distribution is closer to COCO data
distribution: adding domain relevant training examples only marginally improves the precision - we see greater
contribution in recall performance, see Table 2 for details.

Table 2. Boat Model Performance measured as average precision on target test set, at threshold set to 0.5
IPATCH Test Set

Average Precision Average Recall
Train Set IoU 0.5 IoU 0.75 IoU 0.5:0.95 IoU 0.5:0.95

COCO Train 0.341 0.106 0.141 0.26
COCO Train + IPATCH Train 0.925 0.602 0.747 0.681

MarDCT Test Set
Average Precision Average Recall

Train Set IoU 0.5 IoU 0.75 IoU 0.5:0.95 IoU 0.5:0.95
COCO 0.983 0.979 0.804 0.847

COCO + IPATCH 0.964 0.960 0.788 0.853
COCO + IPATCH + MarDCT 0.989 0.989 0.838 0.875

Table 3. MarDCT Boat classes grouped by visual similarity. Note that only 18 out of 24 classes have coverage in test set.
Group 1 consists of visually similar ”Lanciafino10mBianca”, ”Lanciafino10m”, ”Lanciafino10mMarrone”, and ”Lancia-
maggioredi10mBianca” categories, and group 4 encompases the following labels: ”Motobarca”, ”Barchino”,”Patanella”,
”Topa”, ”MotoscafoACTV”, ”Motopontonerettangolare”, ”Gondola”, ”Raccoltarifiuti”,”Sandoloaremi”, ”Alilaguna”,
”Polizia”, ”Ambulanza”

Collection Group 1 Group 2 Group 3 Group 4 Other boats Background

Dataset Lancia* VaporettoACTV Mototopo See caption Other boats Background
Train 598 483 563 730 340 other
Test 296 232 199 241 605 other
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Experiment 2: Refinement and Model Trimming MarDCT dataset is publicly available dataset that
provides frame-level labels for 24 types of boats that operate in city of Venice.

The goal of this experiment was to show that a pre-trained model can be used to detect a new class of objects
separate from which it was previously trained. In this experiment, we further refined the COCO IPATCH model
by adding MarDCT to the training pipeline. After 1000 iterations of refinement the model’s final layer was
trimmed from the 81 COCO layers (80 + background) to 6 mardct class layers (5 + background), classes are
listed in Table 3. The newly trimmed model was then trained on mardct for 100k iterations. The results show
that the learned behavior of a boat are still present from before trimming and that the model is able to classify
boats according to the four MarDCT classes in the new training as demonstrated in Table 4. The precision of
the refinement approach is high for low IoU, and Recall is high accross the board. Figure 7 shows correctly
classified examples from MarDCT test data.

Figure 7. (Left) Training set examples, and (Right) Correctly classified Test examples. Group 1 consists of visually similar
”Lanciafino10mBianca”, ”Lanciafino10m”, ”Lanciafino10mMarrone”, and ”Lanciamaggioredi10mBianca” categories, and
group 4 encompasses the following labels: ”Motobarca”, ”Barchino”,”Patanella”, ”Topa”, ”MotoscafoACTV”, ”Moto-
pontonerettangolare”, ”Gondola”, ”Raccoltarifiuti”,”Sandoloaremi”, ”Alilaguna”, ”Polizia”, ”Ambulanza”

Table 4. Four boat sub-classes model refinement performance measured as average precision on target test set, at threshold
set to 0.5. We compare them with simple modeling using deep features (* notes that the Deep Features extracted used
older version of the Mask RCNN framework.

MarDCT Test Set Average Precision Average Recall
COCO + IPATCH network weights IoU 0.5 IoU 0.75 IoU 0.5:0.95 IoU 0.5:0.95

MarDCT Train refinement 0.958 0.903 0.703 0.766

SVM* 0.53 N/A N?A 0.698

Summary We have demonstrated robust way of increasing model performance when adjusted to domain
characteristics. The greatest discriminator is domain sensitive training data. Maritime domain lack alternative
targets that would be incorrectly associated as maritime vehicles allowed us to relax the parameter constraints
learned on urban natural scenes in consumer photos, adjust parameters of the model inference, and achieve robust
performance and high precision and recall numbers. We have shown the performance of refinement and cascaded
approach for sub-class identification in Table 4. Network refinement seems like a more promising direction.
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6. CONCLUSION

We propose and evaluate an approach for multi-source domain adaptation when few noisy annotations are
available. Varying resolution quality of operational data, size of objects of interest, view occlusions, and large
variation in sensors due to sheer nature of overhead systems as compared to consumer devices contribute to
degradation of the classification and recognition when applied to overhead sensor data. We exploit the domain
characteristics to refine the deep learning framework, and show that our transfer learning strategy produces
models that reliably and accurately discriminate sea objects from overhead imagery data comparable to consumer
data benchmarks. Next, we introduce the notion of modeling at multiple levels of description utilizing deep
features and existing deep network weights to learn the difference between sub-categories, and demonstrate
superior performance of over 90% precision and 70% recall when enough samples are presented.
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